Patents by Inventor Andrew Karellas

Andrew Karellas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020070365
    Abstract: A system for spectroscopic imaging of bodily tissue in which a scintillation screen and a charged coupled device (CCD) are used to accurately image selected tissue. An x-ray source generates x-rays which pass through a region of a subject's body, forming an x-ray image which reaches the scintillation screen. The scintillation screen reradiates a spatial intensity pattern corresponding to the image, the pattern being detected by a CCD sensor. The image is digitized by the sensor and processed by a controller before being stored as an electronic image. Each image is directed onto an associated respective CCD or amorphous silicon detector to generate individual electronic representations of the separate images.
    Type: Application
    Filed: June 29, 2001
    Publication date: June 13, 2002
    Applicant: University of Massachusetts Medical Center
    Inventor: Andrew Karellas
  • Patent number: 6031892
    Abstract: A system for spectroscopic imaging of bodily tissue in which a scintillation screen and a charged coupled device (CCD) are used to accurately image selected tissue. An x-ray source generates x-rays which pass through a region of a subject's body, forming an x-ray image which reaches the scintillation screen. The scintillation screen reradiates a spatial intensity pattern corresponding to the image, the pattern being detected by a CCD sensor. The image is digitized by the sensor and processed by a controller before being stored as an electronic image. Each image is directed onto an associated respective CCD or amorphous silicon detector to generate individual electronic representations of the separate images.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: February 29, 2000
    Assignee: University of Massachusetts Medical Center
    Inventor: Andrew Karellas
  • Patent number: 5864146
    Abstract: A system for spectroscopic imaging of bodily tissue in which a scintillation screen and a charged coupled device (CCD) are used to accurately image selected tissue. An x-ray source generates x-rays which pass through a region of a subject's body, forming an x-ray image which reaches the scintillation screen. The scintillation screen reradiates a spatial intensity pattern corresponding to the image, the pattern being detected by a CCD sensor. The image is digitized by the sensor and processed by a controller before being stored as an electronic image. Each image is directed onto an associated respective CCD or amorphous silicon detector to generate individual electronic representations of the separate images.
    Type: Grant
    Filed: November 13, 1996
    Date of Patent: January 26, 1999
    Assignee: University of Massachusetts Medical Center
    Inventor: Andrew Karellas
  • Patent number: 5715292
    Abstract: A CCD-scintillator x-ray image sensor (18) has a high sensitivity at room temperature and a low profile, enabling the use of the x-ray image sensor in most modern mammography x-ray machines. A cassette 10 that encloses the CCD-based x-ray image sensor has the approximate dimensions of 10.5.times.7.7.times.0.6 inches, and is thus form and fit compatible with conventional film-based cassettes. An electronic interface to the cassette requires but a single cable (24) and a standard connector (22) for connection to a CCD sensor electronics unit. The CCD sensor electronics unit interfaces to a computer, such as a conventional personal computer or workstation, having a relatively high resolution display and a provision for digitally recording high-resolution electronic images. The high sensitivity at ambient (room) temperature results from an x-ray scintillator screen (18c) that is coupled to the CCD image sensor (18a) via a bias cut fiber optic faceplate (18b).
    Type: Grant
    Filed: November 25, 1994
    Date of Patent: February 3, 1998
    Assignees: Loral Fairchild Corporation, University of Massachusetts Medical Center
    Inventors: Michel Sayag, Andrew Karellas
  • Patent number: 5572037
    Abstract: Method and apparatus for generating a large-field, high-resolution digital image of an object by sequentially generating multiple optical scenes representative of different portions of the object, and then sequentially directing each optical scene onto an optical detector to generate multiple sub-images of the different portions of the object. Each scene is induced using a separate X-ray sub-beam, each of which is generated by spatially filtering a portion of an incident X-ray field with a spatial filter moving in concert with the scene-directing device. Once generated, the sub-images are combined to form the large-field, high-resolution image.
    Type: Grant
    Filed: February 3, 1995
    Date of Patent: November 5, 1996
    Assignee: University of Massachusetts Medical Center
    Inventors: Hong Liu, Andrew Karellas
  • Patent number: 5572034
    Abstract: An optical imaging system for generating a seamless image during, for example, X-ray imaging procedures. The imaging system features at least two optical detectors, each including an optically active region for generating separate light-induced images, and a fiber optic plate separated by a groove into first and second fiber-containing sections. Each of the first and second sections are connected to a separate optical detector so that, during operation, fibers contained in these sections function to deliver light exclusively to the optically active regions of the connected detectors, thereby allowing generation of separate light-induced images. These images can then be combined to form a seamless image.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: November 5, 1996
    Assignee: University of Massachusetts Medical Center
    Inventor: Andrew Karellas
  • Patent number: 5519227
    Abstract: A method for fabricating x-ray-detecting structured screens using laser-based micro-machining techniques results in devices having improved spatial resolution. In one case, each pixel of the screen contains an optically active scintillating material surrounded with a optically inactive material having a relatively lower refractive index; following absorption of light, each pixel channels x-ray-induced phosphorescence to a small region of a detector. Alternatively, the optically active material can be a photoconducting material, such as selenium, and the surrounding optically inactive material is chosen to have a relatively high resistivity.
    Type: Grant
    Filed: August 8, 1994
    Date of Patent: May 21, 1996
    Assignee: The University of Massachusetts Medical Center
    Inventor: Andrew Karellas
  • Patent number: 5465284
    Abstract: A system for spectroscopic imaging of bodily tissue in which a scintillation screen and a charged coupled device (CCD) are used to accurately image selected tissue. Applications include the imaging of radionuclide distributions within the human body or the use of a dual energy source to provide a dual photon bone densitometry apparatus that uses stationary or scanning acquisition techniques. X-rays are generated by an x-ray source which pass through a region of a subject's body, forming an x-ray image which reaches the scintillation screen. The scintillation screen reradiates a spatial intensity pattern corresponding to the image, the pattern being detected by a CCD sensor. The image is digitized by the sensor and processed by a controller before being stored as an electronic image. A dual energy x-ray source that delivers two different energy levels provides quantitative information regarding the object being imaged using dual photon absorptiometry techniques.
    Type: Grant
    Filed: June 2, 1992
    Date of Patent: November 7, 1995
    Assignee: University of Massachusetts Medical Center
    Inventor: Andrew Karellas
  • Patent number: 5150394
    Abstract: A dual photon bone densitometry apparatus uses an area scanning technique to minimize scanning time. X-rays are generated by an x-ray source which pass through a region of a subject's body, forming an x-ray image which reaches a scintillation screen. The scintillation screen reradiates a spatial intensity pattern corresponding to the x-ray image, the pattern being detected by a CCD sensor. The image is digitized by the sensor and processed by a controller before being stored as an electronic image. A dual energy x-ray source that delivers two different energy levels provides quantitative information regarding the object being imaged using standard dual photon absorptiometry techniques.
    Type: Grant
    Filed: December 5, 1989
    Date of Patent: September 22, 1992
    Assignee: University of Massachusetts Medical School
    Inventor: Andrew Karellas