Patents by Inventor Andrew Mitchell Rodwell

Andrew Mitchell Rodwell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240018937
    Abstract: A rotor blade for a wind turbine includes a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint. Each of the first and second blade segments includes at least one shell member defining an airfoil surface. The rotor blade also includes pin joint(s) for connecting the first and second blade segments at the chord-wise joint. The pin joint(s) includes pin joint tube(s) received within the pin joint slot(s). The pin joint slot(s) are secured within a bearing block. Further, a gap is defined between the pin joint slot(s) and the bearing block. Moreover, the rotor blade includes a shim within the gap between the pin joint slot(s) and the bearing block so as to retain the pin joint slot(s) within the bearing block. In addition, the shim is constructed of a liquid material that hardens after being poured into the gap.
    Type: Application
    Filed: September 27, 2023
    Publication date: January 18, 2024
    Inventors: Rohit Agarwal, Andrew Mitchell Rodwell, Amir Riahi, Mohammad Salah Attia, Donald Joseph Kasperski, Jianqiang Chen
  • Patent number: 11840030
    Abstract: A method for manufacturing a structural component of a blade segment for a rotor blade includes providing a mold of the structural component having an outer wall that defines an outer surface of the structural component. The method also includes laying up one or more fiber layers in the mold so as to at least partially cover the outer wall. As such, the fiber layer(s) form the outer surface of the structural component. Further, the method includes providing one or more metal mesh layers having one or more ends. Moreover, the method includes providing a cover material to the end(s) of the metal mesh layer(s). In addition, the method includes placing the metal mesh layer(s) with the covered end(s) atop the fiber layer(s). Thus, the method includes infusing the fiber layer(s) and the metal mesh layer(s) together via a resin material so as to form the structural component.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: December 12, 2023
    Assignee: General Electric Company
    Inventors: Andrew Mitchell Rodwell, Xu Chen, Julie Ann Shepherd, Scott Iverson Shillig
  • Patent number: 11828264
    Abstract: A rotor blade includes a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint. Each of the first and second blade segments has at least one shell member defining an airfoil surface. The first blade segment includes a beam structure having a receiving end with at least one span-wise extending pin extending therefrom. The second blade segment includes a receiving section that receives the beam structure. The receiving section includes a chord-wise member having a pin joint slot defined therethrough. The pin joint slot receives the span-wise extending pin at the receiving end of the beam structure so as to secure the first and second blade segments together. Moreover, the chord-wise member, the pin joint slot, and/or the span-wise extending pin includes at least one compliant structure formed of a compliant material that allows a deformation thereof to follow a shear deformation of the rotor blade.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: November 28, 2023
    Assignee: General Electric Company
    Inventors: Thomas Merzhaeuser, Andrew Mitchell Rodwell, Mohammad Salah Attia, Matthew Brian Dudon
  • Patent number: 11802543
    Abstract: A rotor blade for a wind turbine includes a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint. The blade segments each have at least one shell member defining an airfoil surface and an internal support structure. The internal support structure of the first blade segment includes a beam structure that structurally connects with the internal support structure of the second blade segment via a receiving section. The rotor blade further includes one or more pin joints positioned on at least one of internal support structures of the blade segments. Further, at least one of internal support structures is constructed, at least in part, of a resin material having a plurality of fibers cured therein. The fibers are arranged with varying fiber orientations along a span of the rotor blade at locations of the pin joint(s).
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: October 31, 2023
    Assignee: General Electric Company
    Inventors: Thomas Merzhaeuser, Andrew Mitchell Rodwell, Scott Jacob Huth
  • Patent number: 11802542
    Abstract: A rotor blade for a wind turbine includes a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint. Each of the first and second blade segments includes at least one shell member defining an airfoil surface. The rotor blade also includes one or more pin joints for connecting the first and second blade segments at the chord-wise joint. The pin joint(s) includes one or more pin joint tubes received within the pin joint slot(s). The pin joint slot(s) are secured within a bearing block. Further, a gap is defined between the pin joint slot(s) and the bearing block. Moreover, the rotor blade includes a shim within the gap between the pin joint slot(s) and the bearing block so as to retain the pin joint slot(s) within the bearing block. In addition, the shim is constructed of a liquid material that hardens after being poured into the gap.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: October 31, 2023
    Assignee: General Electric Company
    Inventors: Rohit Agarwal, Andrew Mitchell Rodwell, Amir Riahi, Mohammad Salah Attia, Donald Joseph Kasperski, Jianqiang Chen
  • Patent number: 11795907
    Abstract: A rotor blade for a wind turbine includes first and second blade segments extending in opposite directions from a chord-wise joint. Each of the first and second blade segments has at least one shell member defining an airfoil surface and an internal support structure. The first blade segment includes a beam structure extending lengthwise that structurally connects with the second blade segment at a receiving section. At least one of the internal support structures of the first and second blade segments includes at least one spar cap. The rotor blade also includes one or more pin joints positioned on the spar cap(s) for connecting the blade segments. The spar cap is constructed of varying forms of materials along a span of the rotor blade, including at least two of: one or more infused composite laminates, one or more pre-preg composite laminates, one or more pre-fabricated or pre-cured composite elements, one or more additively-manufactured structures, or one or more non-composite structural solids.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: October 24, 2023
    Assignee: General Electric Company
    Inventors: Thomas Merzhaeuser, Andrew Mitchell Rodwell, Scott Jacob Huth, Aaron A. Yarbrough
  • Publication number: 20230323855
    Abstract: A method of joining first and second blade components of a rotor blade of a wind turbine includes arranging the first blade component and the second blade component together at an interface. The first and second blade components are formed of different materials having different stiffnesses. The method further includes providing at least one gap at the interface of the blade components. Further, the method includes securing the blade components together by at least partially filling the gap with at least one filler material. Moreover, the method includes further securing the blade components together via an infusion process, wherein, during the infusion process, additional filler material further fills the gap or covers at least a portion of the at least one filler material. In addition, the method includes allowing the filler material(s) to cure.
    Type: Application
    Filed: August 31, 2021
    Publication date: October 12, 2023
    Inventors: Graham Andress Aldinger, Scott Jacob Huth, Rohit Agarwal, Amir Riahi, Andrew Mitchell Rodwell, Thomas Merzhaeuser
  • Patent number: 11780183
    Abstract: A method for manufacturing a structural component of a blade segment for a segmented rotor blade of a wind turbine includes providing a mold of the structural component. The mold has an outer wall that defines an outer surface of the structural component. The method also includes securing at least one tooling pin to the outer wall for defining a pin joint slot in the structural component. Further, the method includes laying up one or more outer fiber layers in the mold so as to at least partially cover the outer wall. The outer fiber layer(s) has at least one hole that receives the tooling pin(s). As such, the outer fiber layer(s) form the outer surface of the structural component. Moreover, the method includes placing one or more structural features atop the outer fiber layer(s) in the mold. In addition, the method includes infusing the outer fiber layer(s) and the structural feature(s) together via a resin material so as to form the structural component.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: October 10, 2023
    Assignee: General Electric Company
    Inventors: Scott Jacob Huth, Xu Chen, Louis Rondeau, Andrew Mitchell Rodwell, Scott Iverson Shillig
  • Patent number: 11767819
    Abstract: A rotor blade for a wind turbine including first and second blade segments extending in opposite directions from a chord-wise joint. The first and second blade segments include one or more shell members and internal support structures coupled to an inner surface of the one or more shell members of the first and second blade segments. The internal support structure of the first blade segment includes a beam structure extending between a first end at the chord-wise joint and a second end such that the beam structure is received by a receiving section of the internal support structure of the second blade segment. The rotor blade includes one or more spacer materials arranged within the first blade segment between an exterior surface of the beam structure and the inner surface of the one or more shell members to reduce a bond gap therebetween.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: September 26, 2023
    Assignee: General Electric Company
    Inventors: Scott Jacob Huth, Andrew Mitchell Rodwell, Andrew Ross Collier, Alec Antonio Lopez
  • Patent number: 11680555
    Abstract: A jointed rotor blade includes a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint. Each of blade segments has at least one shell member defining an airfoil surface and an internal support structure. The internal support structure of the first blade segment includes a beam structure extending lengthwise that structurally connects with the internal support structure of the second blade segment via a receiving section. The rotor blade further includes one or more pin joints positioned on at least one of internal support structures of the first blade segment or the second blade segment. Thus, at least one of internal support structures of the first blade segment or the second blade segment includes varying material combinations along a span of the rotor blade at locations of the one or more pin joints so as to reinforce the one or more pin joints.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: June 20, 2023
    Assignee: General Electric Company
    Inventors: Thomas Merzhaeuser, Aaron A. Yarbrough, Andrew Mitchell Rodwell, Rishikesh Kumar
  • Patent number: 11614069
    Abstract: A rotor blade for a wind turbine includes first and second blade segments extending in opposite directions from a chord-wise joint. Each of the first and second blade segments includes at least one shell member defining an airfoil surface and an internal support structure. The internal support structure of the first blade segment includes a beam structure extending lengthwise, whereas the internal support structure of the second blade segment includes a receiving section that receives the beam structure of the first blade segment. Further, the rotor blade includes at least one chord-wise extending pin positioned through the beam structure and the receiving section at the chord-wise joint so as to secure the first and second blade segments together. The rotor blade includes at least one additional support member that receives a portion of the chord-wise extending pin so as to reduce a chord-wise bending deflection of the chord-wise extending pin at the chord-wise joint.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: March 28, 2023
    Assignee: General Electric Company
    Inventors: Andrew Mitchell Rodwell, Thomas Merzhaeuser
  • Patent number: 11572863
    Abstract: A jointed wind turbine rotor blade includes a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint line. Each of the first and second blade segments includes opposite spar caps. The first and second blade segments are connected at the chord-wise joint line by internal joint structure, wherein the joint structure is bonded to the opposite spar caps in at least the second blade segment. The spar caps in the second blade segment have a first section with a first chord-wise width that is unbonded to the joint structure and a second section with a second chord-wise width that is bonded to the joint structure. The second chord-wise width is greater than the first chord-wise width.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: February 7, 2023
    Assignee: General Electric Company
    Inventors: Andrew Ross Collier, Andrew Mitchell Rodwell, Scott Jacob Huth
  • Publication number: 20220282699
    Abstract: A segmented rotor blade for a wind turbine. The segmented rotor blade including at least a first blade segment and a second blade segment extending in opposite directions from a joint. Each of the first and second blade segments including at least one shell member defining an airfoil surface. A joint assembly coupling the first blade segment to the second blade segment via a dovetail connection at the joint. The joint assembly including at least one receiving section defining a receiving cavity, a joining structure received within the at least one receiving section to establish a dovetail connection, and a securement assembly securing the joining structure within the at least one receiving section so as to secure the dovetail connection.
    Type: Application
    Filed: June 30, 2020
    Publication date: September 8, 2022
    Inventors: Aaron Alpheus Yarbrough, Christopher Daniel Caruso, Andrew Mitchell Rodwell, Donald Joseph Kasperski
  • Publication number: 20220178346
    Abstract: A rotor blade includes first and second blade segments extending in opposite directions from a chord-wise joint. The first blade segment includes a beam structure that connects with the second blade segment via a receiving section. A chord-wise gap exists between an edge of the beam structure and an edge of the receiving section. The beam structure defines a first pin joint slot, whereas the receiving section defines a second pin joint slot that aligns with the first pin joint slot. First and second bushings are arranged in first ends of the first and second pin joint slots, each having a flange extending within the chord-wise gap. As such, the flanges abut against each other within the chord-wise gap so as to fill the chord-wise gap with a predetermined defined gap or interference. Further, a chord-wise extending pin is positioned through the bushings so as to secure the first and second blade segments together.
    Type: Application
    Filed: February 27, 2020
    Publication date: June 9, 2022
    Inventors: Jon Stuart Wright, Andrew Mitchell Rodwell, Scott Jacob Huth, Scott Iverson Shillig, Rohit Agarwal, Ashley Simone Wilford
  • Publication number: 20220120255
    Abstract: A rotor blade for a wind turbine includes a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint. Each of the first and second blade segments includes at least one shell member defining an airfoil surface. The rotor blade also includes one or more pin joints for connecting the first and second blade segments at the chord-wise joint. The pin joint(s) includes one or more pin joint tubes received within the pin joint slot(s). The pin joint slot(s) are secured within a bearing block. Further, a gap is defined between the pin joint slot(s) and the bearing block. Moreover, the rotor blade includes a shim within the gap between the pin joint slot(s) and the bearing block so as to retain the pin joint slot(s) within the bearing block. In addition, the shim is constructed of a liquid material that hardens after being poured into the gap.
    Type: Application
    Filed: November 1, 2018
    Publication date: April 21, 2022
    Inventors: Rohit Agarwal, Andrew Mitchell Rodwell, Amir Riahi, Mohammad Salah Attia, Donald Joseph Kasperski, Jianqiang Chen
  • Publication number: 20220082078
    Abstract: A rotor blade for a wind turbine includes a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint. The blade segments each have at least one shell member defining an airfoil surface and an internal support structure. The internal support structure of the first blade segment includes a beam structure that structurally connects with the internal support structure of the second blade segment via a receiving section. The rotor blade further includes one or more pin joints positioned on at least one of internal support structures of the blade segments. Further, at least one of internal support structures is constructed, at least in part, of a resin material having a plurality of fibers cured therein. The fibers are arranged with varying fiber orientations along a span of the rotor blade at locations of the pin joint(s).
    Type: Application
    Filed: December 19, 2018
    Publication date: March 17, 2022
    Inventors: Thomas Merzhaeuser, Andrew Mitchell Rodwell, Scott Jacob Huth
  • Publication number: 20220082079
    Abstract: A rotor blade for a wind turbine including a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint. Each of the first and second blade segments include one or more shell members and an internal support structure. The internal support structure of the first blade segment includes a beam structure extending between a receiving end and a second end. The internal support structure of the second blade segment includes a receiving section that receives the receiving end of the beam structure of the first blade segment. The rotor blade further includes one or more connection locations where the first and second blade segments are secured together. Moreover, when the beam structure is received within the receiving section, a gap including a varying thickness is defined and maintained between the beam structure and the receiving section in a span-wise direction of the rotor blade.
    Type: Application
    Filed: December 20, 2018
    Publication date: March 17, 2022
    Inventors: Scott Jacob Huth, Andrew Mitchell Rodwell, Thomas Merzhaeuser
  • Publication number: 20220072812
    Abstract: A method for manufacturing a structural component of a blade segment for a segmented rotor blade of a wind turbine includes forming first and second portions of the structural component. The first and second portions include respective holes that align in a chord-wise direction. The method also includes placing the first and second portions of the structural component into a mold such that their respective holes align in the chord-wise direction. Further, the method includes placing a tooling pin through the aligned holes. In addition, the method includes infusing the first and second sides together in the second mold via a resin material so as to form the structural component. Moreover, the method includes removing the tooling pin after the structural component has cured.
    Type: Application
    Filed: December 11, 2018
    Publication date: March 10, 2022
    Inventors: Scott Jacob Huth, Andrew Mitchell Rodwell, Xu Chen, Louis Rondeau, Scott Iverson Shillig
  • Publication number: 20220065218
    Abstract: A rotor blade for a wind turbine includes a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint. Each of the first and second blade segments has at least one shell member defining an airfoil surface and an internal support structure. The first blade segment defines a first pre-bend in a flap-wise direction. The second blade segment defines a different, second pre-bend in the flap-wise direction. Further, the first pre-bend is greater than the second pre-bend. In addition, the first and second pre-bends provide an overall pre-bend in the flap-wise direction away from a tower of the wind turbine that allows for a predetermined deflection of the rotor blade towards the tower.
    Type: Application
    Filed: December 11, 2018
    Publication date: March 3, 2022
    Inventors: Scott Jacob Huth, Andrew Mitchell Rodwell, Thomas Merzhaeuser
  • Publication number: 20220065219
    Abstract: A rotor blade for a wind turbine includes first and second blade segments extending in opposite directions from a chord-wise joint. Each of the first and second blade segments includes at least one shell member defining an airfoil surface and an internal support structure. The internal support structure of the first blade segment includes a beam structure extending lengthwise, whereas the internal support structure of the second blade segment includes a receiving section that receives the beam structure of the first blade segment. Further, the rotor blade includes at least one chord-wise extending pin positioned through the beam structure and the receiving section at the chord-wise joint so as to secure the first and second blade segments together. The rotor blade includes at least one additional support member that receives a portion of the chord-wise extending pin so as to reduce a chord-wise bending deflection of the chord-wise extending pin at the chord-wise joint.
    Type: Application
    Filed: December 13, 2018
    Publication date: March 3, 2022
    Inventors: Andrew Mitchell Rodwell, Thomas Merzhaeuser