Patents by Inventor Andrew S. Kuczma

Andrew S. Kuczma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9841315
    Abstract: Methods and apparatus for performing Distributed Acoustic Sensing (DAS) using fiber optics with increased acoustic sensitivity are provided. Acoustic sensing of a wellbore, pipeline, or other conduit/tube based on DAS may have increased acoustic sensitivity through fiber optic cable design and/or increasing the Rayleigh backscatter property of a fiber's optical core. Some embodiments may utilize a resonant sensor mechanism with a high Q coupled to the DAS device for increased acoustic sensitivity.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: December 12, 2017
    Assignee: WEATHERFORD TECHNOLOGY HOLDINGS, LLC
    Inventors: Domino Taverner, John J. Grunbeck, James R. Dunphy, Edward M. Dowd, David LaBella, Mark Baker, Andrew S. Kuczma, Francis X. Bostick, III
  • Publication number: 20160116331
    Abstract: Methods and apparatus for performing Distributed Acoustic Sensing (DAS) using fiber optics with increased acoustic sensitivity are provided. Acoustic sensing of a wellbore, pipeline, or other conduit/tube based on DAS may have increased acoustic sensitivity through fiber optic cable design and/or increasing the Rayleigh backscatter property of a fiber's optical core. Some embodiments may utilize a resonant sensor mechanism with a high Q coupled to the DAS device for increased acoustic sensitivity.
    Type: Application
    Filed: December 30, 2015
    Publication date: April 28, 2016
    Inventors: Domino TAVERNER, John J. GRUNBECK, James R. DUNPHY, Edward M. DOWD, David ABELLA, Mark BAKER, Andrew S. KUCZMA, Francis X. BOSTICK, III
  • Patent number: 9255836
    Abstract: Methods and apparatus for performing Distributed Acoustic Sensing (DAS) using fiber optics with increased acoustic sensitivity are provided. Acoustic sensing of a wellbore, pipeline, or other conduit/tube based on DAS may have increased acoustic sensitivity through fiber optic cable design and/or increasing the Rayleigh backscatter property of a fiber's optical core. Some embodiments may utilize a resonant sensor mechanism with a high Q coupled to the DAS device for increased acoustic sensitivity.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: February 9, 2016
    Assignee: WEATHERFORD TECHNOLOGY HOLDINGS, LLC
    Inventors: Domino Taverner, John J. Grunbeck, James R. Dunphy, Edward M. Dowd, Andrew S. Kuczma, Francis X. Bostick, III, David Labella, Mark Baker
  • Patent number: 8769995
    Abstract: The present invention provides a method for making a multicore large diameter optical waveguide having a cross-section of at least about 0.3 millimeters, two or more inner cores, a cladding surrounding the two or more inner cores, and one or more side holes for reducing the bulk modulus of compressibility and maintaining the anti-buckling strength of the large diameter optical waveguide. The method features the steps of: assembling a preform for drawing a multicore large diameter optical waveguide having a cross-section of at least about 0.3 millimeters, by providing an outer tube having a cross-section of at least about 0.3 millimeters and arranging two or more preform elements in relation to the outer tube; heating the preform; and drawing the large diameter optical waveguide from the heated preform. In one embodiment, the method also includes the step of arranging at least one inner tube inside the outer tube.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: July 8, 2014
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Edward M. Dowd, Joseph J. Baraglia, Andrew S. Kuczma, Brian J. Pike, Thomas W. Engel, Martin A. Putnam
  • Publication number: 20120111104
    Abstract: Methods and apparatus for performing Distributed Acoustic Sensing (DAS) using fiber optics with increased acoustic sensitivity are provided. Acoustic sensing of a wellbore, pipeline, or other conduit/tube based on DAS may have increased acoustic sensitivity through fiber optic cable design and/or increasing the Rayleigh backscatter property of a fiber's optical core. Some embodiments may utilize a resonant sensor mechanism with a high Q coupled to the DAS device for increased acoustic sensitivity.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 10, 2012
    Inventors: Domino Taverner, John J. Grunbeck, James R. Dunphy, Edward M. Dowd, Andrew S. Kuczma, Francis X. Bostick, III, David Labella, Mark Baker
  • Patent number: 7907807
    Abstract: Methods and apparatus provide for birefringent waveguides suitable for optical systems exhibiting polarization dependence such as interferometer sensors including Sagnac interferometric fiber optic gyroscopes (IFOG). The waveguides, for some embodiments, may offer single polarization performance over lengths of about a kilometer or more due to polarization dependent attenuation. According to some embodiments, the waveguides incorporate a pure silica core for resistance to radiation-induced attenuation (RIA).
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: March 15, 2011
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Paul E. Sanders, Edward M. Dowd, Andrew S. Kuczma, Trevor W. MacDougall, Brian J. Pike
  • Patent number: 7697144
    Abstract: A method and apparatus for reducing the thermal induced errors in an IFOG system. The apparatus including a highly thermally conductive material configured to encapsulate a waveguide of an interferometric fiber optic gyroscope (IFOG). The highly thermally conductive material more evenly distributes thermal changes encountered by a sensing coil of the IFOG thereby substantially reducing errors in the IFOG system.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: April 13, 2010
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Paul E. Sanders, Andrew S. Kuczma
  • Publication number: 20090310925
    Abstract: Methods and apparatus provide for birefringent waveguides suitable for optical systems exhibiting polarization dependence such as interferometer sensors including Sagnac interferometric fiber optic gyroscopes (IFOG). The waveguides, for some embodiments, may offer single polarization performance over lengths of about a kilometer or more due to polarization dependent attenuation. According to some embodiments, the waveguides incorporate a pure silica core for resistance to radiation-induced attenuation (RIA).
    Type: Application
    Filed: October 14, 2008
    Publication date: December 17, 2009
    Inventors: PAUL E. SANDERS, Edward M. Dowd, Andrew S. Kuczma, Trevor W. MacDougall, Brian J. Pike
  • Publication number: 20090079989
    Abstract: A method and apparatus for reducing the thermal induced errors in an IFOG system. The apparatus including a highly thermally conductive material configured to encapsulate a waveguide of an interferometric fiber optic gyroscope (IFOG). The highly thermally conductive material more evenly distributes thermal changes encountered by a sensing coil of the IFOG thereby substantially reducing errors in the IFOG system.
    Type: Application
    Filed: September 25, 2007
    Publication date: March 26, 2009
    Inventors: PAUL E. SANDERS, ANDREW S. KUCZMA
  • Patent number: 7437044
    Abstract: Methods and apparatus provide for birefringent waveguides suitable for optical systems exhibiting polarization dependence such as interferometer sensors including Sagnac interferometric fiber optic gyroscopes (IFOG). The waveguides, for some embodiments, may offer single polarization performance over lengths of about a kilometer or more due to polarization dependent attenuation. According to some embodiments, the waveguides incorporate a pure silica core for resistance to radiation-induced attenuation (RIA).
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: October 14, 2008
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Paul E. Sanders, Edward M. Dowd, Andrew S. Kuczma, Trevor W. MacDougall, Brian J. Pike
  • Publication number: 20080151254
    Abstract: Methods and apparatus provide for birefringent waveguides suitable for optical systems exhibiting polarization dependence such as interferometer sensors including Sagnac interferometric fiber optic gyroscopes (IFOG). The waveguides, for some embodiments, may offer single polarization performance over lengths of about a kilometer or more due to polarization dependent attenuation. According to some embodiments, the waveguides incorporate a pure silica core for resistance to radiation-induced attenuation (RIA).
    Type: Application
    Filed: December 21, 2006
    Publication date: June 26, 2008
    Inventors: Paul E. Sanders, Edward M. Dowd, Andrew S. Kuczma, Trevor W. MacDougall, Brian J. Pike
  • Patent number: 7080529
    Abstract: The present invention provides a method for making a multicore large diameter optical waveguide having a cross-section of at least about 0.3 millimeters, two or more inner cores, a cladding surrounding the two or more inner cores, and one or more side holes for reducing the bulk modulus of compressibility and maintaining the anti-buckling strength of the large diameter optical waveguide. The method features the steps of: assembling a preform for drawing a multicore large diameter optical waveguide having a cross-section of at least about 0.3 millimeters, by providing an outer tube having a cross-section of at least about 0.3 millimeters and arranging two or more preform elements in relation to the outer tube; heating the preform; and drawing the large diameter optical waveguide from the heated preform. In one embodiment, the method also includes the step of arranging at least one inner tube inside the outer tube.
    Type: Grant
    Filed: June 9, 2003
    Date of Patent: July 25, 2006
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Edward M. Dowd, Joseph J. Baraglia, Andrew S. Kuczma, Brian J. Pike, Thomas W. Engel, Martin A. Putnam
  • Patent number: 7082239
    Abstract: The present invention generally provides a hydrogen gettering agent containing a fullerene compound, a protected optical fiber cable containing the hydrogen gettering agent and a method of making the same. According to some embodiments, the protected optical fiber cable is provided comprising a protective sheath, at least one optical fiber positioned within the protective sheath, and the hydrogen gettering agent surrounding the at least one optical fiber within the protective sheath.
    Type: Grant
    Filed: June 17, 2003
    Date of Patent: July 25, 2006
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Andrew S. Kuczma, Robert Buxbaum
  • Publication number: 20040258371
    Abstract: The present invention generally provides a hydrogen gettering agent containing a fullerene compound, a protected optical fiber cable containing the hydrogen gettering agent and a method of making the same. According to some embodiments, the protected optical fiber cable is provided comprising a protective sheath, at least one optical fiber positioned within the protective sheath, and the hydrogen gettering agent surrounding the at least one optical fiber within the protective sheath.
    Type: Application
    Filed: June 17, 2003
    Publication date: December 23, 2004
    Inventors: Andrew S. Kuczma, Robert Buxbaum
  • Publication number: 20040163420
    Abstract: Methods for making a preform for a large diameter optical waveguide such as a cane waveguide are disclosed. The method includes inserting a preform into a glass tube to serve as cladding that provides a thickened preform, simultaneously fusing and stretching the thickened preform, sectioning the stretched and still thickened preform and repeating the procedure if necessary to provide an even further thickened preform. The drawing apparatus can be configured to work with the preform disposed either horizontally or vertically and usually includes a graphite resistance furnace. Typically, the drawing apparatus is an upper portion of a draw tower used for drawing an optical fiber from an optical fiber preform. The draw tower includes a tractor pulling mechanism that can adjust to grip a wide range of diameters.
    Type: Application
    Filed: January 5, 2004
    Publication date: August 26, 2004
    Inventors: Edward Michael Dowd, Andrew S. Kuczma, Brian John Pike
  • Publication number: 20040050111
    Abstract: The present invention provides a method for making a multicore large diameter optical waveguide having a cross-section of at least about 0.3 millimeters, two or more inner cores, a cladding surrounding the two or more inner cores, and one or more side holes for reducing the bulk modulus of compressibility and maintaining the anti-buckling strength of the large diameter optical waveguide. The method features the steps of: assembling a preform for drawing a multicore large diameter optical waveguide having a cross-section of at least about 0.3 millimeters, by providing an outer tube having a cross-section of at least about 0.3 millimeters and arranging two or more preform elements in relation to the outer tube; heating the preform; and drawing the large diameter optical waveguide from the heated preform. In one embodiment, the method also includes the step of arranging at least one inner tube inside the outer tube.
    Type: Application
    Filed: June 9, 2003
    Publication date: March 18, 2004
    Applicant: CiDRA Corporation
    Inventors: Edward M. Dowd, Joseph J. Baraglia, Andrew S. Kuczma, Brian J. Pike, Thomas W. Engel, Martin A. Putnam
  • Patent number: 5239026
    Abstract: The present invention provides a curable coating composition comprising at least one fluorinated monoacrylate monomer, at least one polyethylenically unsaturated fluorinated crosslinking monomer different from the acrylate monomer, and at least one adhesion promoting monomer different from any other monomer in the composition of matter, which preferably is a fluorinated acrylamide silane. Optionally, fluorinated acrylamide silane monomers, non-fluorinated mono- or polyethylenically unsaturated monomers, or non-fluorinated silane adhesion promoting monomers may be added.The free radical polymerization product of the aforementioned coating composition provides a novel cladding material for optical fibers. The optical fibers of the invention can be used as waveguides in communications and laser delivery systems.
    Type: Grant
    Filed: August 26, 1991
    Date of Patent: August 24, 1993
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Stefan A. Babirad, Andrew S. Kuczma, Patricia M. Savu
  • Patent number: 4852969
    Abstract: The present invention provides novel silyl 2-amidoacetates and silyl 3-amidopropionates which are the reaction products of azlactone and silanol reactants. The novel products result from nucleophilic addition of a soluble or insoluble, low or high molecular weight reactant containing one or more silanol groups and a soluble or insoluble, low or high molecular weight reactant containing one or more azlactone groups. The reaction products provide for high adhesion between the siliceous and azlactone reactants, as would be useful as protective coatings particularly on silicon-containing materials. It has been recognized in the present invention that silyl 2-amidoacetates and silyl 3-amidopropionates are useful linkages between silanol and azlactone derived materials.
    Type: Grant
    Filed: March 17, 1988
    Date of Patent: August 1, 1989
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Stefan A. Babirad, Fredrick Bacon, Steven M. Heilmann, Larry R. Krepski, Andrew S. Kuczma, Jerald K. Rasmussen