Patents by Inventor Andrew Sundstrom

Andrew Sundstrom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210271753
    Abstract: A controller emulator, coupled to an interface that exposes the controller emulator to inputs from external sources, provides one or more control signals to a process simulator and a deep learning process. In response, the process simulator simulates response data that is provided to the deep learning processor. The deep learning processor generates expected response data and expected behavioral pattern data for the one or more control signals, as well as actual behavioral pattern data for the simulated response data. A comparison of at least one of the simulated response data to the expected response data and the actual behavioral pattern data to the expected behavioral pattern data is performed to determine whether anomalous activity is detected. As a result of detecting anomalous activity, one or more operations are performed to address the anomalous activity.
    Type: Application
    Filed: June 12, 2020
    Publication date: September 2, 2021
    Inventors: Matthew C. Putman, John B. Putman, Vadim Pinskiy, Andrew Sundstrom, James Williams, III
  • Patent number: 11100221
    Abstract: A system including a deep learning processor receives one or more control signals from one or more of a factory's process, equipment and control (P/E/C) systems during a manufacturing process. The processor generates expected response data and expected behavioral pattern data for the control signals. The processor receives production response data from the one or more of the factory's P/E/C systems and generates production behavioral pattern data for the production response data. The process compares at least one of: the production response data to the expected response data, and the production behavioral pattern data to the expected behavioral pattern data to detect anomalous activity. As a result of detecting anomalous activity, the processor performs one or more operations to provide notice or cause one or more of the factory's P/E/C systems to address the anomalous activity.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: August 24, 2021
    Assignee: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, John B. Putman, Vadim Pinskiy, Damas Limoge, Andrew Sundstrom, James Williams, III
  • Publication number: 20210256116
    Abstract: A manufacturing system is disclosed herein. The manufacturing system includes one or more stations, a monitoring platform, and a control module. Each station of the one or more stations is configured to perform at least one step in a multi-step manufacturing process for a component. The monitoring platform is configured to monitor progression of the component throughout the multi-step manufacturing process. The control module is configured to detect a cyberattack to the manufacturing system. The control module is configured to perform operations. The operations include receiving control values for a first station of the one or more stations. The operations further include determining that there is a cyberattack based on the control values for the first station using one or more machine learning algorithms. The operations further include generating an alert to cease processing of the component. In some embodiments, the operations further include correcting errors caused by the cyberattack.
    Type: Application
    Filed: November 20, 2020
    Publication date: August 19, 2021
    Applicant: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, Vadim Pinskiy, Damas Limoge, Andrew Sundstrom
  • Patent number: 11086988
    Abstract: A controller emulator, coupled to an interface that exposes the controller emulator to inputs from external sources, provides one or more control signals to a process simulator and a deep learning process. In response, the process simulator simulates response data that is provided to the deep learning processor. The deep learning processor generates expected response data and expected behavioral pattern data for the one or more control signals, as well as actual behavioral pattern data for the simulated response data. A comparison of at least one of the simulated response data to the expected response data and the actual behavioral pattern data to the expected behavioral pattern data is performed to determine whether anomalous activity is detected. As a result of detecting anomalous activity, one or more operations are performed to address the anomalous activity.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: August 10, 2021
    Assignee: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, John B. Putman, Vadim Pinskiy, Andrew Sundstrom, James Williams, III
  • Patent number: 11063965
    Abstract: A system including a deep learning processor obtains response data of at least two data types from a set of process stations performing operations as part of a manufacturing process. The system analyzes factory operation and control data to generate expected behavioral pattern data. Further, the system uses the response data to generate actual behavior pattern data for the process stations. Based on an analysis of the actual behavior pattern data in relation to the expected behavioral pattern data, the system determines whether anomalous activity has occurred as a result of the manufacturing process. If it is determined that anomalous activity has occurred, the system provides an indication of this anomalous activity.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: July 13, 2021
    Assignee: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, John B. Putman, Vadim Pinskiy, Damas Limoge, Andrew Sundstrom, James Williams, III
  • Publication number: 20210194897
    Abstract: A system including a deep learning processor obtains response data of at least two data types from a set of process stations performing operations as part of a manufacturing process. The system analyzes factory operation and control data to generate expected behavioral pattern data. Further, the system uses the response data to generate actual behavior pattern data for the process stations. Based on an analysis of the actual behavior pattern data in relation to the expected behavioral pattern data, the system determines whether anomalous activity has occurred as a result of the manufacturing process. If it is determined that anomalous activity has occurred, the system provides an indication of this anomalous activity.
    Type: Application
    Filed: February 4, 2020
    Publication date: June 24, 2021
    Inventors: Matthew C. Putman, John B. Putman, Vadim Pinskiy, Damas Limoge, Andrew Sundstrom, James Williams, III
  • Publication number: 20210192779
    Abstract: A manufacturing system is disclosed herein. The manufacturing system includes one or more stations, a monitoring platform, and a control module. Each station of the one or more stations is configured to perform at least one step in a multi-step manufacturing process for a component. The monitoring platform is configured to monitor progression of the component throughout the multi-step manufacturing process. The control module is configured to dynamically adjust processing parameters of each step of the multi-step manufacturing process to achieve a desired final quality metric for the component.
    Type: Application
    Filed: March 9, 2021
    Publication date: June 24, 2021
    Applicant: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, Vadim Pinskiy, Andrew Sundstrom, Aswin Raghav Nirmaleswaran, Eun-Sol Kim
  • Publication number: 20210132593
    Abstract: A manufacturing system is disclosed herein. The manufacturing system includes one or more stations, a monitoring platform, and a control module. Each station of the one or more stations is configured to perform at least one step in a multi-step manufacturing process for a component. The monitoring platform is configured to monitor progression of the component throughout the multi-step manufacturing process. The control module is configured to dynamically adjust processing parameters of each step of the multi-step manufacturing process to achieve a desired final quality metric for the component.
    Type: Application
    Filed: November 6, 2020
    Publication date: May 6, 2021
    Applicant: Nanotronics Imaging, Inc.
    Inventors: Andrew Sundstrom, Damas Limoge, Eun-Sol Kim, Vadim Pinskiy, Matthew C. Putman
  • Publication number: 20210103654
    Abstract: A system including a deep learning processor receives one or more control signals from one or more of a factory's process, equipment and control (P/E/C) systems during a manufacturing process. The processor generates expected response data and expected behavioral pattern data for the control signals. The processor receives production response data from the one or more of the factory's P/E/C systems and generates production behavioral pattern data for the production response data. The process compares at least one of: the production response data to the expected response data, and the production behavioral pattern data to the expected behavioral pattern data to detect anomalous activity. As a result of detecting anomalous activity, the processor performs one or more operations to provide notice or cause one or more of the factory's P/E/C systems to address the anomalous activity.
    Type: Application
    Filed: June 18, 2020
    Publication date: April 8, 2021
    Applicant: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, John B. Putman, Vadim Pinskiy, Domos Limoge, Andrew Sundstrom, James Williams, III
  • Publication number: 20200293019
    Abstract: Aspects of the disclosed technology provide a computational model that utilizes machine learning for detecting errors during a manual assembly process and determining a sequence of steps to complete the manual assembly process in order to mitigate the detected errors. In some implementations, the disclosed technology evaluates a target object at a step of an assembly process where an error is detected to a nominal object to obtain a comparison. Based on this comparison, a sequence of steps for completion of the assembly process of the target object is obtained. The assembly instructions for creating the target object are adjusted based on this sequence of steps.
    Type: Application
    Filed: April 20, 2020
    Publication date: September 17, 2020
    Inventors: Matthew C. Putman, Vadim Pinskiy, Eun-sol Kim, Andrew Sundstrom
  • Publication number: 20200278657
    Abstract: Aspects of the disclosed technology provide an Artificial Intelligence Process Control (AIPC) for automatically detecting errors in a manufacturing workflow of an assembly line process, and performing error mitigation through the update of instructions or guidance given to assembly operators at various stations. In some implementations, the disclosed technology utilizes one or more machine-learning models to perform error detection and/or propagate instructions/assembly modifications necessary to rectify detected errors or to improve the product of manufacture.
    Type: Application
    Filed: September 30, 2019
    Publication date: September 3, 2020
    Inventors: Matthew C. Putman, Vadim Pinskiy, Eun-Sol Kim, Andrew Sundstrom
  • Patent number: 10481579
    Abstract: Aspects of the disclosed technology provide an Artificial Intelligence Process Control (AIPC) for automatically detecting errors in a manufacturing workflow of an assembly line process, and performing error mitigation through the update of instructions or guidance given to assembly operators at various stations. In some implementations, the disclosed technology utilizes one or more machine-learning models to perform error detection and/or propagate instructions/assembly modifications necessary to rectify detected errors or to improve the product of manufacture.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: November 19, 2019
    Assignee: NANOTRONICS IMAGING, INC.
    Inventors: Matthew C. Putman, Vadim Pinskiy, Eun-Sol Kim, Andrew Sundstrom
  • Patent number: 9995766
    Abstract: The present disclosure provides methods of measuring a property of a macromolecule. The methods generally involve applying an empirically learned correction term to a test metric to generate a high-accuracy measurement. The present disclosure further provides a computer program product and a computer system for carrying out a subject method.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: June 12, 2018
    Assignee: The Regents of the University of California
    Inventors: Jason C. Reed, Bhubaneswar Mishra, Andrew Sundstrom
  • Publication number: 20110013820
    Abstract: The present disclosure provides methods of measuring a property of a macromolecule. The methods generally involve applying an empirically learned correction term to a test metric to generate a high-accuracy measurement. The present disclosure further provides a computer program product and a computer system for carrying out a subject method.
    Type: Application
    Filed: June 16, 2010
    Publication date: January 20, 2011
    Inventors: Jason C. Reed, Bhubaneswar Mishra, Andrew Sundstrom