Patents by Inventor Andy Chih-Hung Wei

Andy Chih-Hung Wei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220130721
    Abstract: Methods for fabricating an IC structure by applying self-assembled monolayers (SAMs) are disclosed. An example IC structure includes a stack of three metallization layers provided over a support structure, where the first metallization layer includes a bottom metal line, the third metallization layer includes a top metal line, and the second metallization layer includes a via coupled between the bottom metal line and the top metal line, where via's sidewalls are enclosed by a first dielectric material. Application of one or more SAMs results in at least a portion of the via's sidewalls being lined with a second dielectric material so that the second dielectric material is between the first dielectric material and an electrically conductive material of the via, where the dielectric constant of the second dielectric material is higher than that of the first dielectric material and lower than about 6.
    Type: Application
    Filed: October 22, 2020
    Publication date: April 28, 2022
    Applicant: Intel Corporation
    Inventors: Guillaume Bouche, Shashi Vyas, Akm Shaestagir Chowdhury, Andy Chih-Hung Wei, Charles Henry Wallace
  • Publication number: 20220130758
    Abstract: Methods for fabricating interconnect arrangements of a metallization layer Mx by using stitching that is enabled by subtractive metallization are disclosed. An example method includes providing a metal layer and a collection layer over the metal layer. The method then includes forming openings for two sets of metal lines by performing a first lithographic process to provide, in the collection layer, first openings for a first set of lines, and then performing a second lithographic process to provide, in the collection layer, second openings for a second set of lines. The method further includes performing a third lithographic process to provide a further opening (a stitch opening) that overlaps with at least one of the first openings of a first track and at least one of the second openings of a second track, and, finally, transferring the pattern of the first, second, and stitch openings to the metal layer.
    Type: Application
    Filed: October 27, 2020
    Publication date: April 28, 2022
    Applicant: Intel Corporation
    Inventors: Guillaume Bouche, Andy Chih-Hung Wei
  • Patent number: 11264463
    Abstract: Embodiments of the present invention provide a multiple fin field effect transistor (finFET) with low-resistance gate structure. A metallization line is formed in parallel with the gate, and multiple contacts are formed over the fins which connect the metallization line to the gate. The metallization line provides reduced gate resistance, which allows fewer transistors to be used for providing In-Out (IO) functionality, thereby providing space savings that enable an increase in circuit density.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: March 1, 2022
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Guillaume Bouche, Andy Chih-Hung Wei
  • Publication number: 20210366823
    Abstract: Disclosed herein are methods for manufacturing an integrated circuit (IC) structure, e.g., for manufacturing a metallization stack portion of an IC structure, with one or more self-aligned vias integrated in the back end of line (BEOL), and related semiconductor devices. The methods may employ direct metal etch for scaling the BEOL pitches of the metallization layers. In one aspect, an example method results in fabrication of a via that is self-aligned to both a metal line above it and a metal line below it. Methods described herein may provide improvements in terms of one or more of reducing the misalignment between vias and electrically conductive structures connected thereto, reducing the RC delays, and increasing reliability if the final IC structures.
    Type: Application
    Filed: May 21, 2020
    Publication date: November 25, 2021
    Applicant: Intel Corporation
    Inventors: Guillaume Bouche, Andy Chih-Hung Wei
  • Publication number: 20210305362
    Abstract: Disclosed herein are isolation regions in integrated circuit (IC) structures, as well as related methods and components. For example, in some embodiments, an IC component may include: a first region including silicon; a second region including alternating layers of a second material and a third material, wherein the second material includes silicon and germanium, the third material includes silicon, and individual ones of the layers in the second region has a thickness that is less than 3 nanometers; and a third region including alternating layers of the second material and the third material, wherein individual ones of the layers in the third region has a thickness that is greater than 3 nanometers, and the second region is between the first region and the third region.
    Type: Application
    Filed: March 25, 2020
    Publication date: September 30, 2021
    Applicant: Intel Corporation
    Inventors: Guillaume Bouche, Sean T. Ma, Andy Chih-Hung Wei
  • Publication number: 20210305244
    Abstract: Discussed herein is gate spacing in integrated circuit (IC) structures, as well as related methods and components. For example, in some embodiments, an IC structure may include: a first gate metal having a longitudinal axis; a second gate metal, wherein the longitudinal axis of the first gate metal is aligned with a longitudinal axis of the second gate metal; a first dielectric material continuously around the first gate metal; and a second dielectric material continuously around the second gate metal, wherein the first dielectric material and the second dielectric material are present between the first gate metal and the second gate metal.
    Type: Application
    Filed: March 26, 2020
    Publication date: September 30, 2021
    Applicant: Intel Corporation
    Inventors: Guillaume Bouche, Andy Chih-Hung Wei, Sean T. Ma
  • Publication number: 20210305370
    Abstract: Discussed herein is device contact sizing in integrated circuit (IC) structures. In some embodiments, an IC structure may include: a first source/drain (S/D) contact in contact with a first S/D region, and a second S/D contact in contact with a second S/D region, wherein the first S/D region and the second S/D region have a same length, and the first S/D contact and the second S/D contact have different lengths.
    Type: Application
    Filed: March 26, 2020
    Publication date: September 30, 2021
    Applicant: Intel Corporation
    Inventors: Guillaume Bouche, Andy Chih-Hung Wei, Sean T. Ma
  • Publication number: 20210305365
    Abstract: Disclosed herein are source/drain regions in integrated circuit (IC) structures, as well as related methods and components. For example, in some embodiments, an IC structure may include: an array of channel regions, including a first channel region and an adjacent second channel region; a first source/drain region proximate to the first channel region; a second source/drain region proximate to the second channel region; and an insulating material region at least partially between the first source/drain region and the second source/drain region.
    Type: Application
    Filed: March 25, 2020
    Publication date: September 30, 2021
    Applicant: Intel Corporation
    Inventors: Sean T. Ma, Andy Chih-Hung Wei, Guillaume Bouche
  • Publication number: 20210305380
    Abstract: Discussed herein are device contacts in integrated circuit (IC) structures. In some embodiments, an IC structure may include: a first source/drain (S/D) contact; a gate contact, wherein the gate contact is in contact with a gate and with the first S/D contact; and a second S/D contact, wherein a height of the second S/D contact is less than a height of the first S/D contact.
    Type: Application
    Filed: March 27, 2020
    Publication date: September 30, 2021
    Applicant: Intel Corporation
    Inventors: Guillaume Bouche, Andy Chih-Hung Wei, Mwilwa Tambwe, Sean T. Ma, Piyush Mohan Sinha
  • Publication number: 20210296506
    Abstract: Described herein are IC devices with non-planar SiGe transistors fabricated using silicon replacement. Silicon replacement as described herein refers to providing, over a support structure (e.g., a substrate, a wafer, a chip, or a die), a channel body for a non-planar transistor, where the channel body includes silicon, providing a cladding layer that includes germanium over at least a portion of the channel body, and annealing the channel body so that at least some of the germanium diffuses into the channel body. The channel body is a fin if the transistor is a FinFET transistor, and is a nanoribbon or a nanowire if the transistor is a nanoribbon-based transistor. Fabricating non-planar SiGe transistors using silicon replacement advantageously allows forming IC devices with both silicon and SiGe transistors on a single support structure.
    Type: Application
    Filed: March 20, 2020
    Publication date: September 23, 2021
    Applicant: Intel Corporation
    Inventors: Andy Chih-Hung Wei, Jack T. Kavalieros, Guillaume Bouche
  • Publication number: 20210280708
    Abstract: Described herein are transistor arrangements fabricated by forming a metal gate cut as a trench that is non-selective to the gate sidewalls, in an etch process that can remove both the gate electrode materials and the surrounding dielectrics. Such an etch process may provide improvements in terms of accuracy, cost-efficiency, and device performance, compared to conventional approaches to forming metal gate cuts. In addition, such a process may be used to provide power rails, if the trench of a metal gate cut is to be at least partially filled with an electrically conductive material. Because the electrically conductive material is in the trench and may be in between the fins, as opposed to being provided over the fins, such power rails may be referred to as “recessed.” Providing recessed power rails may provide improvements in terms of reduced metal line resistance and reduced voltage droop.
    Type: Application
    Filed: March 9, 2020
    Publication date: September 9, 2021
    Applicant: Intel Corporation
    Inventors: Andy Chih-Hung Wei, Sean T. Ma, Piyush Mohan Sinha
  • Publication number: 20200286998
    Abstract: Embodiments of the present invention provide a multiple fin field effect transistor (finFET) with low-resistance gate structure. A metallization line is formed in parallel with the gate, and multiple contacts are formed over the fins which connect the metallization line to the gate. The metallization line provides reduced gate resistance, which allows fewer transistors to be used for providing In-Out (IO) functionality, thereby providing space savings that enable an increase in circuit density.
    Type: Application
    Filed: May 26, 2020
    Publication date: September 10, 2020
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Guillaume Bouche, Andy Chih-Hung Wei
  • Patent number: 10700170
    Abstract: Embodiments of the present invention provide a multiple fin field effect transistor (finFET) with low-resistance gate structure. A metallization line is formed in parallel with the gate, and multiple contacts are formed over the fins which connect the metallization line to the gate. The metallization line provides reduced gate resistance, which allows fewer transistors to be used for providing In-Out (IO) functionality, thereby providing space savings that enable an increase in circuit density.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: June 30, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Guillaume Bouche, Andy Chih-Hung Wei
  • Patent number: 10644136
    Abstract: Provided are approaches for forming merged gate and source/drain (S/D) contacts in a semiconductor device. Specifically, one approach provides a dielectric layer over a set of gate structures formed over a substrate; a set of source/drain (S/D) openings patterned in the dielectric layer between the gate structures; a fill material formed over the gate structures, including within the S/D openings; and a set of gate openings patterned over the gate structures, wherein a portion of the dielectric layer directly adjacent the fill material formed within one of the S/D openings is removed. The fill material is then removed, selective to the dielectric layer, and a metal material is deposited over the semiconductor device to form a set of gate contacts within the gate openings, and a set of S/D contacts within the S/D openings, wherein one of the gate contacts and one of the S/D contacts are merged.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: May 5, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Guillaume Bouche, Andy Chih-Hung Wei
  • Patent number: 10396026
    Abstract: Embodiments of the present invention provide a method for cuts of sacrificial metal lines in a back end of line structure. Sacrificial Mx+1 lines are formed above metal Mx lines. A line cut lithography stack is deposited and patterned over the sacrificial Mx+1 lines and a cut cavity is formed. The cut cavity is filled with dielectric material. A selective etch process removes the sacrificial Mx+1 lines, preserving the dielectric that fills in the cut cavity. Precut metal lines are then formed by depositing metal where the sacrificial Mx+1 lines were removed. Thus embodiments of the present invention provide precut metal lines, and do not require metal cutting. By avoiding the need for metal cutting, the risks associated with metal cutting are avoided.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: August 27, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Andy Chih-Hung Wei, Guillaume Bouche, Mark A. Zaleski
  • Patent number: 10056373
    Abstract: Embodiments of the present invention provide an improved semiconductor structure and methods of fabrication that provide transistor contacts that are self-aligned in two dimensions. Two different capping layers are used, each being comprised of a different material. The two capping layers are selectively etchable to each other. One capping layer is used for gate coverage while the other capping layer is used for source/drain coverage. Selective etch processes open the desired gates and source/drains, while block masks are used to cover elements that are not part of the connection scheme. A metallization line (layer) is deposited, making contact with the open elements to provide electrical connectivity between them.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: August 21, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Andy Chih-Hung Wei, Guillaume Bouche, Mark A. Zaleski, Tuhin Guha Neogi, Jason E. Stephens, Jongwook Kye, Jia Zeng
  • Publication number: 20180233585
    Abstract: Provided are approaches for forming merged gate and source/drain (S/D) contacts in a semiconductor device. Specifically, one approach provides a dielectric layer over a set of gate structures formed over a substrate; a set of source/drain (S/D) openings patterned in the dielectric layer between the gate structures; a fill material formed over the gate structures, including within the S/D openings; and a set of gate openings patterned over the gate structures, wherein a portion of the dielectric layer directly adjacent the fill material formed within one of the S/D openings is removed. The fill material is then removed, selective to the dielectric layer, and a metal material is deposited over the semiconductor device to form a set of gate contacts within the gate openings, and a set of S/D contacts within the S/D openings, wherein one of the gate contacts and one of the S/D contacts are merged.
    Type: Application
    Filed: April 4, 2018
    Publication date: August 16, 2018
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Guillaume Bouche, Andy Chih-Hung Wei
  • Patent number: 9960256
    Abstract: Provided are approaches for forming merged gate and source/drain (S/D) contacts in a semiconductor device. Specifically, one approach provides a dielectric layer over a set of gate structures formed over a substrate; a set of source/drain (S/D) openings patterned in the dielectric layer between the gate structures; a fill material formed over the gate structures, including within the S/D openings; and a set of gate openings patterned over the gate structures, wherein a portion of the dielectric layer directly adjacent the fill material formed within one of the S/D openings is removed. The fill material is then removed, selective to the dielectric layer, and a metal material is deposited over the semiconductor device to form a set of gate contacts within the gate openings, and a set of S/D contacts within the S/D openings, wherein one of the gate contacts and one of the S/D contacts are merged.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: May 1, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Guillaume Bouche, Andy Chih-Hung Wei
  • Patent number: 9842801
    Abstract: Provided are approaches for forming a self-aligned via and an air gap within a semiconductor device. Specifically, one approach produces a device having: a first metal line beneath a second metal line within an ultra low-k (ULK) dielectric, the first metal line connected to the second metal line by a first via; a dielectric capping layer formed over the second metal line; a third metal line within first and second via openings formed within a ULK fill material formed over the dielectric capping layer, wherein the third metal line within the first via opening extends to a top surface of the dielectric capping layer, and wherein the third metal line within the second via opening is connected to the second metal by a second via passing through the dielectric capping layer; and an air gap formed between the third metal line within the first and seconds via openings.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: December 12, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Andy Chih-Hung Wei, Mark A. Zaleski
  • Patent number: 9735154
    Abstract: Embodiments of the present invention provide methods of removing fin portions from a finFET. At a starting point, a high-K dielectric layer is disposed on a substrate. A fin hardmask and lithography stack is deposited on the high-k dielectric. A fin hardmask is exposed, and a first portion of the fin hardmark is removed. The lithography stack is removed. A second portion of the fin hardmask is removed. Fins are formed. A gap fill dielectric is deposited and recessed.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: August 15, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Andy Chih-Hung Wei, Dae-han Choi, Dae Geun Yang, Xiang Hu, Mariappan Hariharaputhiran