Patents by Inventor Anil K. Sachdev

Anil K. Sachdev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210408517
    Abstract: A method for making a pre-lithiated electrode for a lithium ion battery cell, a method for making a battery with a pre-lithiated electrode, and an electric vehicle with a pre-lithiated electrode are provided. An exemplary method for making a pre-lithiated electrode for a lithium ion battery cell includes electrochemically connecting a magnesium-lithium alloy to the electrode. Further, the method includes pre-lithiating the electrode by transferring lithium ions from the magnesium-lithium alloy to the electrode. Also, the method includes electrochemically disconnecting the magnesium-lithium alloy from the electrode.
    Type: Application
    Filed: June 25, 2020
    Publication date: December 30, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Andrew C. Bobel, Anil K. Sachdev, Jeffrey D. Cain, Leng Mao
  • Publication number: 20210394554
    Abstract: A brake rotor includes a friction portion, a hat portion axially extending from the friction portion and including a top face that is axially displaced from the friction portion and a side wall that extends from the friction portion to the top face, and a nose portion which extends axially from the top face of the hat portion away from the friction portion.
    Type: Application
    Filed: June 17, 2020
    Publication date: December 23, 2021
    Inventors: Henry Zhan, Jianfeng Wang, Congjie Wang, Ming Liu, Anil K. Sachdev
  • Publication number: 20210316996
    Abstract: Systems, methods and compositions to produce fine powders are described. These include forming a hypereutectic melt including a target material, a sacrificial-matrix material, and an impurity, rapidly cooling the hypereutectic melt to form a hypereutectic alloy having a first phase and a second phase, annealing the hypereutectic alloy to alter a morphology of the target material to thereby produce target particles, and removing the sacrificial matrix to thereby produce a fine powder of the target particles. The first phase is defined by the target material and the second phase is defined by the sacrificial-matrix material. The sacrificial-matrix material forms a sacrificial matrix having the target material dispersed therethrough.
    Type: Application
    Filed: June 1, 2019
    Publication date: October 14, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Mahmoud Abd Elhamid, Andrew C. Bobel, Anil K. Sachdev, Mark W. Verbrugge, Nicholas P. Pieczonka, James R. Salvador
  • Patent number: 11132986
    Abstract: A panel assembly is formed by a plurality of bonds between two sheet materials in a face to face relationship to form a preform. The plurality of bonds define a closed perimeter region between the two sheet materials and an open perimeter region between the two sheet materials. The preform may be formed into a predefined shape. Pressurized fluid is applied through an inlet into the open perimeter region to expand the preform. The pressurized fluid expands the open perimeter region such that the two sheet materials expand in an opposing direction, thereby defining an expanded open perimeter region. The closed perimeter region between the two sheet materials remains vacant of the pressurized fluid such that the closed perimeter region is not expanded. The expanded open perimeter region is filled with a filler material for improving a performance characteristic of the panel assembly, e.g., strength, sound absorption, or stiffness.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: September 28, 2021
    Assignee: GM Global Technology Operations LLC
    Inventors: Anil K. Sachdev, Raja K. Mishra, Jon T. Carter, Tyson W. Brown, Blair E. Carlson, David R. Sigler, Robert N. Saje, Matthew P. Simonin
  • Publication number: 20210296027
    Abstract: A three-dimensional object may be manufactured using a powder bed fusion additive manufacturing technique. A layer of powder feed material may be distributed over a solid substrate and scanned with a high-energy laser beam to locally melt selective regions of the layer and form a pool of molten feed material. The pool of molten feed material may be exposed to gaseous nitrogen, carbon, or boron to respectively dissolve nitride, carbide, or boride ions into the pool of molten feed material to produce a molten nitrogen, carbon, or boron-containing solution. The molten nitrogen, carbon, or boron-containing solution may cool and solidify into a solid layer of fused nitride, carbide, or boride-containing material.
    Type: Application
    Filed: June 3, 2021
    Publication date: September 23, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Anil K Sachdev, Frederick E Pinkerton, Raja K Mishra, Tyson W Brown
  • Publication number: 20210175486
    Abstract: The present disclosure relates to electroactive materials for use in electrodes of lithium-ion electrochemical cells and methods of making the same, for example, methods for lithiating electroactive materials. A method of lithiating an electroactive material may include dispersing an electroactive material precursor within a room-temperature electrolyte that includes a lithium-based salt and contacting the electrolyte mixture and a lithium source so as to cause the lithium source to ionize and form lithium ions. The lithium ions may react with the electroactive material precursor to form a fully lithiated electroactive material (e.g., greater than 70% of total lithiation). The method further includes, in certain aspects, electrochemically discharging the fully lithiated electroactive material to form a lithiated electroactive material having an optimized lithiation state (e.g., less than or equal to about 40% of a first lithiation state of the fully lithiated electroactive material).
    Type: Application
    Filed: December 6, 2019
    Publication date: June 10, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jeffrey D. CAIN, Andrew C. BOBEL, Nicholas P. PIECZONKA, Robert D. SCHMIDT, Anil K. SACHDEV, Mark W. VERBRUGGE
  • Patent number: 11031161
    Abstract: A three-dimensional object made of a bulk nitride, carbide, or boride-containing material may be manufactured using a powder bed fusion additive manufacturing technique. A layer of powder feed material may be distributed over a solid substrate and scanned with a high-energy laser beam to locally melt selective regions of the layer and form a pool of molten feed material. The pool of molten feed material may be exposed to gaseous nitrogen, carbon, or boron to respectively dissolve nitride, carbide, or boride ions into the pool of molten feed material to produce a molten nitrogen, carbon, or boron-containing solution. The molten nitrogen, carbon, or boron-containing solution may cool and solidify into a solid layer of fused nitride, carbide, or boride-containing material. In one form, the three-dimensional object may comprise a permanent magnet made up of a plurality of solid layers of fused iron nitride material having a magnetic Fe16N2 phase.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: June 8, 2021
    Assignee: GM Global Technology Operations LLC
    Inventors: Anil K. Sachdev, Frederick E. Pinkerton, Raja K. Mishra, Tyson W. Brown
  • Patent number: 11007713
    Abstract: An additive manufacturing system includes a powder delivery system, an area scanning laser, a build chamber, and a controller. The powder delivery system provides a predetermined amount of powder material to the build chamber, and includes a material dispenser, a dispensing head, and a scraper. The scanning laser selectively sinters the powder material, and includes a mirror galvanometer for raster scanning. The build chamber has an annular configuration, and includes an inner annular wall that defines a central portion disposed inward of the build chamber. A portion of the delivery system and the laser are located in the central portion. The chamber continuously rotates under the head and under a sintering zone generated by the laser as the delivery system continuously dispenses the material. The laser continuously raster scans the material at the sintering zone in a raster pattern to sinter a layer of material directly to a preceding layer.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: May 18, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: John P Spicer, Jason J Nolte, Thomas A. Perry, Blair E Carlson, Anil K Sachdev, Hyungmin Chae, Mark A Smith
  • Patent number: 11011742
    Abstract: Anodes, and battery cells utilizing the same, include silicon particles embedded within a copper matrix, wherein the anode includes 40 at. % to 75 at. % silicon. The anode can include about 21 at. % to about 67 at. % silicon particles. The copper matrix can include pure copper and/or one or more copper-silicon intermetallic phases. The copper matrix can further include one or more of nickel, gold, silver, beryllium, and zinc. The silicon particles embedded in the copper matrix can have an average particle diameter less than 10 ?m. The non-surfacial silicon particles embedded in the copper matrix can be at least 99 at. % pure. The anode can be a woven mesh of ribbons or a planar sheet.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: May 18, 2021
    Assignee: GM Global Technology Operations LLC
    Inventors: Anil K. Sachdev, Andrew C. Bobel, James R. Salvador, Mark W. Verbrugge
  • Patent number: 10982306
    Abstract: A powder material for an additive manufacturing process and a method of manufacturing a three-dimensional article via an additive manufacturing process. The powder material comprises an iron-based alloy including alloying elements of carbon (C) and copper (Cu). The iron-based alloy may be formulated to achieve a precipitation strengthened microstructure comprising a lath martensite matrix phase and a Cu precipitate phase. The iron-based alloy may have a Cu weight fraction and a nickel (Ni) weight fraction, and the Ni weight fraction may be less than the Cu weight fraction of the iron-based alloy.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: April 20, 2021
    Assignee: GM Global Technology Operations LLC
    Inventors: Andrew C. Bobel, Anil K. Sachdev, Tyson W. Brown
  • Publication number: 20210084790
    Abstract: A cooling assembly according to various aspects of the present disclosure includes a housing, an electronic component, a dielectric coolant, and a cover. The housing includes an interior compartment having a basin region in which the electronic component and the coolant are disposed. The coolant undergoes phase change between a liquid state and a gas state. The coolant is in direct contact with the electronic component in the liquid state. The cover component extends transversely through the interior compartment and is coupled to the body. The cover component is disposed in a direction with respect to the basin region. The cover component at least partially defines a port in fluid communication with the basin region. The cover component is configured to permit flow therethrough of the dielectric coolant in the gas state in at least the direction.
    Type: Application
    Filed: September 18, 2019
    Publication date: March 18, 2021
    Inventors: Anil K. SACHDEV, Chih-hung YEN, Venkata Prasad ATLURI
  • Publication number: 20200393069
    Abstract: In an embodiment, a method of forming a cooling plate, comprises laser welding a plurality of weld lines to physically connect a first substrate and a second substrate wherein the plurality of weld lines forms an inflatable track; and inflating the inflatable track with an inflation fluid to form a cooling channel in the cooling plate. In another embodiment, the cooling plate can comprise a first substrate and a second substrate and a plurality of weld lines can form a fluid tight seal for a cooling channel located therebetween.
    Type: Application
    Filed: June 17, 2019
    Publication date: December 17, 2020
    Inventors: Anil K. Sachdev, Arianna T. Morales, Jason Mazza, Andrew C. Bobel
  • Publication number: 20200388824
    Abstract: Anodes, and battery cells utilizing the same, include silicon particles embedded within a copper matrix, wherein the anode includes 40 at. % to 75 at. % silicon. The anode can include about 21 at. % to about 67 at. % silicon particles. The copper matrix can include pure copper and/or one or more copper-silicon intermetallic phases. The copper matrix can further include one or more of nickel, gold, silver, beryllium, and zinc. The silicon particles embedded in the copper matrix can have an average particle diameter less than 10 ?m. The non-surfacial silicon particles embedded in the copper matrix can be at least 99 at. % pure. The anode can be a woven mesh of ribbons or a planar sheet.
    Type: Application
    Filed: June 10, 2019
    Publication date: December 10, 2020
    Inventors: Anil K. Sachdev, Andrew C. Bobel, James R. Salvador, Mark W. Verbrugge
  • Publication number: 20200377370
    Abstract: Systems, methods and compositions to produce fine powders are described. These include forming a hypereutectic melt including a target material, a sacrificial-matrix material, and an impurity, rapidly cooling the hypereutectic melt to form a hypereutectic alloy having a first phase and a second phase, annealing the hypereutectic alloy to alter a morphology of the target material to thereby produce target particles, and removing the sacrificial matrix to thereby produce a fine powder of the target particles. The first phase is defined by the target material and the second phase is defined by the sacrificial-matrix material. The sacrificial-matrix material forms a sacrificial matrix having the target material dispersed therethrough.
    Type: Application
    Filed: June 1, 2019
    Publication date: December 3, 2020
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Mahmoud Abd Elhamid, Andrew C. Bobel, Anil K. Sachdev, Mark W. Verbrugge, Nicholas P. Pieczonka, James R. Salvador
  • Patent number: 10791787
    Abstract: A cover covering an object includes an inner surface of the cover facing the object and spaced from the object, and an outer surface of the cover opposite the inner surface. A local energy absorber is operatively attached to the inner surface of the cover. The local energy absorber includes an energy absorbing core layer operatively attached to the inner surface of the cover and a frangible face sheet layer attached to the energy absorbing core layer facing the object. The frangible face sheet layer is to initiate fracture of the frangible face sheet layer during an impact applied to the outer surface defining an impact event having a duration of less than 20 milliseconds.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: October 6, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Louis G. Hector, Jr., Nilesh D. Mankame, Hanif Muhammad, Anil K. Sachdev
  • Publication number: 20200255928
    Abstract: An alloy composition is provided. The alloy composition includes silicon (Si) at a concentration of greater than or equal to about 0.55 wt. % to less than or equal to about 0.75 wt. %, magnesium (Mg) at a concentration of greater than or equal to about 0.55 wt. % to less than or equal to about 0.75 wt. %, chromium (Cr) at a concentration of greater than or equal to about 0.15 wt. % to less than or equal to about 0.3 wt. %, and a balance of the alloy composition being aluminum (Al). The alloy composition has an intermetallic phase content of less than or equal to about 3 wt. %. Methods of preparing the alloy composition and of processing the alloy composition are also provided.
    Type: Application
    Filed: February 8, 2019
    Publication date: August 13, 2020
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Arianna T. MORALES, Raja K. MISHRA, Anil K. SACHDEV
  • Patent number: 10711330
    Abstract: Magnesium-aluminum corrosion-resistant alloys are provided and include magnesium, aluminum, germanium, small amounts of cathodic reaction active site impurities such as iron, copper, nickel, and cobalt, manganese, and optionally tin. The alloy can include up to about 0.75% germanium, at least about 2.5% aluminum, up to about 2.25% tin, at most 0.0055% iron impurities, and at most 0.125% silicon impurities. The ratio of germanium to iron can be less than 150. The ratio of manganese to iron can be at least 75. The alloy can comprise one or more intermetallic complexes, including magnesium-germanium, magnesium-aluminum, and aluminum-manganese intermetallic complexes.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: July 14, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yang Guo, Ming Liu, Anil K. Sachdev
  • Patent number: 10696332
    Abstract: A vehicle hood covering an underhood object includes an inner surface of the vehicle hood facing the underhood object and spaced from the underhood object, and an outer surface of the vehicle hood opposite the inner surface. A local energy absorber is operatively attached to the inner surface of the vehicle hood. The local energy absorber is a multiply-connected structure. The local energy absorber includes a wall defining an interior surface having symmetry about a central plane normal to the inner surface of the vehicle hood. A plurality of apertures is defined in the wall symmetrically about the central plane to initiate buckling and fracture in the wall during an impact applied to the outer surface defining an impact event having a duration of less than 20 milliseconds.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: June 30, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Nilesh D. Mankame, Hanif Muhammad, Louis G. Hector, Jr., Anil K. Sachdev
  • Patent number: 10682723
    Abstract: A method of resistance spot welding a steel workpiece and an aluminum or aluminum alloy workpiece, and a welding electrode used therein. In one step of the method a workpiece stack-up is provided. The workpiece stack-up includes a steel workpiece and an aluminum or aluminum alloy workpiece. Another step of the method involves contacting the aluminum or aluminum alloy workpiece with a weld face of the welding electrode. The welding electrode has a body and an insert. The insert is composed of a material having an electrical resistivity that is greater than an electrical resistivity of the material of the body. The weld face has a first section defined by a surface of the insert and has a second section defined by a surface of the body. Both the first and second sections make surface-to-surface contact with the aluminum or aluminum alloy workpiece amid resistance spot welding.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: June 16, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: David R. Sigler, Blair E. Carlson, James G. Schroth, David S. Yang, Anil K. Sachdev
  • Publication number: 20200156134
    Abstract: A thermal-assisted method deforms a sheet metal assembly having constrained ends. A focus bending area located between the constrained ends is heated. The focus bending area is bent while the sheet metal assembly is within an elevated bending temperature range. A sheet metal assembly may be formed by this method, which includes an outer metal sheet and an inner metal sheet fixed together to form constrained ends. The sheet metal assembly has a bend formed therein between the first and second constrained ends, wherein each metal sheet is bent at the bend with a maximum gap between the inner and outer metal sheets at the bend. The maximum gap is no greater than five times the thickness of one of the inner and outer metal sheets, and the bend has a radius less than three times the thickness of one of the inner and outer sheets.
    Type: Application
    Filed: November 20, 2018
    Publication date: May 21, 2020
    Inventors: Anil K. Sachdev, John E. Carsley, Robert N. Saje