Patents by Inventor Anita Dimeska

Anita Dimeska has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8507706
    Abstract: Certain metallocene compounds are provided that, when used as a component in a supported polymerization catalyst under industrially relevant polymerization conditions, afford high molar mass homo polymers or copolymers like polypropylene or propylene/ethylene copolymers without the need for any ?-branched substituent in either of the two available 2-positions of the indenyl ligands. The substituent in the 2-position of one indenyl ligand can be any radical comprising hydrogen, methyl, or any other C2-C40 hydrocarbon which is not branched in the ?-position, and the substituent in the 2-position of the other indenyl ligand can be any C4-C40 hydrocarbon radical with the proviso that this hydrocarbon radical is branched in the ?-position. This metallocene topology affords high melting point, very high molar mass homo polypropylene and very high molar mass propylene-based copolymers. The activity/productivity levels of catalysts including the metallocenes of the present invention are exceptionally high.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: August 13, 2013
    Assignee: Lummus Novolen Technology GmbH
    Inventors: Anita Dimeska, Ralph-Dieter Maier, Nicola Stephanie Paczkowski, Matthew Grant Thorn, Andreas Winter, Joerg Schulte, Thorsten Sell
  • Patent number: 8415492
    Abstract: Certain metallocene compounds are provided that, when used as a component in a supported polymerization catalyst under industrially relevant polymerization conditions, afford high molar mass homo polymers or copolymers like polypropylene or propylene/ethylene copolymers without the need for any ?-branched substituent in either of the two available 2-positions of the indenyl ligands. The substituent in the 2-position of one indenyl ligand can be any radical comprising hydrogen, methyl, or any other C2-C40 hydrocarbon which is not branched in the ?-position, and substituent in the 2-position of the other indenyl ligand can be any C5-C40 hydrocarbon radical with the proviso that this hydrocarbon radical is branched in the ?-position and that the ?-carbon atom is a quarternary carbon atom and part of a non-cyclic hydrocarbon system. This metallocene topology affords high melting point, very high molar mass homo polypropylene and very high molar mass propylene-based copolymers.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: April 9, 2013
    Assignee: Lummus Novolen Technology GmbH
    Inventors: Thorsten Sell, Andreas Winter, Matthew Grant Thorn, Anita Dimeska, Franz Langhauser
  • Publication number: 20120329964
    Abstract: Certain metallocene compounds are provided that, when used as a component in a supported polymerization catalyst under industrially relevant polymerization conditions, afford high molar mass homo polymers or copolymers like polypropylene or propylene/ethylene copolymers without the need for any ?-branched substituent in either of the two available 2-positions of the indenyl ligands. The substituent in the 2-position of one indenyl ligand can be any radical comprising hydrogen, methyl, or any other C2-C40 hydrocarbon which is not branched in the ?-position, and the substituent in the 2-position of the other indenyl ligand can be any C4-C40 hydrocarbon radical with the proviso that this hydrocarbon radical is branched in the ?-position. This metallocene topology affords high melting point, very high molar mass homo polypropylene and very high molar mass propylene-based copolymers. The activity/productivity levels of catalysts including the metallocenes of the present invention are exceptionally high.
    Type: Application
    Filed: September 6, 2012
    Publication date: December 27, 2012
    Applicant: LUMMUS NOVOLEN TECHNOLOGY GMBH
    Inventors: Anita Dimeska, Ralph-Dieter Maier, Nicola S. Paczkowski, Matthew Grant Thorn, Andreas Winter, Joerg Schulte, Thorsten Sell
  • Patent number: 8299287
    Abstract: Certain metallocene compounds are provided that, when used as a component in a supported polymerization catalyst under industrially relevant polymerization conditions, afford high molar mass homo polymers or copolymers like polypropylene or propylene/ethylene copolymers without the need for any ?-branched substituent in either of the two available 2-positions of the indenyl ligands. The substituent in the 2-position of one indenyl ligand can be any radical comprising hydrogen, methyl, or any other C2-C40 hydrocarbon which is not branched in the ?-position, and the substituent in the 2-position of the other indenyl ligand can be any C4-C40 hydrocarbon radical with the proviso that this hydrocarbon radical is branched in the ?-position. This metallocene topology affords high melting point, very high molar mass homo polypropylene and very high molar mass propylene-based copolymers. The activity/productivity levels of catalysts including the metallocenes of the present invention are exceptionally high.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: October 30, 2012
    Assignee: Lammus Novolen Technology GmbH
    Inventors: Anita Dimeska, Ralph-Dieter Maier, Nicola S. Paczkowski, Matthew Grant Thorn, Andreas Winter, Joerg Schulte, Thorsten Sell
  • Patent number: 8168556
    Abstract: A metallocene compound with the 4- and 7-positions on the indenyl moiety possessing large aromatic substituents is prepared in accordance with a method which produces substantially 100 percent racemic isomer. Advantageously, polymerization catalysts including the metallocene of the invention provide superior olefin polymerization results.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: May 1, 2012
    Assignee: Lummus Novolen Technology GmbH
    Inventors: Joerg Schulte, Thorsten Sell, Matthew Grant Thorn, Andreas Winter, Anita Dimeska
  • Patent number: 8138251
    Abstract: A high impact strength random block copolymer including (a) about 65-97 wt. % of a crystalline propylene/ethylene copolymer A containing from about 0.5 wt. % to about 6 wt. % derived from ethylene and from about 94 wt. % to about 99.5 wt. % derived from propylene, and (b) about 3-35 wt. % of a propylene/ethylene copolymer B containing from about 8 wt. % to about 40 wt % derived from ethylene and from about 60 wt % to about 92 wt. % derived from propylene. The crystalline to amorphous ratio Lc/La of the random block copolymer ranges from about 1.00 to about 2.25. The random block copolymer is characterized by both high toughness and low haze.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: March 20, 2012
    Assignee: Lummus Novolen Technology GmbH
    Inventors: Jose Pezzutti, Alberto Benito, Guillermo Cassano, Leandro Roth, Werner Schoene, Hartmut Siebert, Andreas Winter, Anita Dimeska, Vassilios Galiatsatos
  • Publication number: 20120046396
    Abstract: A high impact strength random block copolymer including (a) about 65-97 wt. % of a crystalline propylene/ethylene copolymer A containing from about 0.5 wt. % to about 6 wt. % derived from ethylene and from about 94 wt. % to about 99.5 wt. % derived from propylene, and (b) about 3-35 wt. % of a propylene/ethylene copolymer B containing from about 8 wt. % to about 40 wt % derived from ethylene and from about 60 wt % to about 92 wt. % derived from propylene. The crystalline to amorphous ratio Lc/La of the random block copolymer ranges from about 1.00 to about 2.25. The random block copolymer is characterized by both high toughness and low haze.
    Type: Application
    Filed: November 2, 2011
    Publication date: February 23, 2012
    Applicant: Lummus Novolen Technology GmbH
    Inventors: José Pezzutti, Alberto Benito, Guillermo Cassano, Leandro Roth, Werner Schoene, Hartmut Siebert, Andreas Winter, Anita Dimeska, Vassilios Galiatsatos
  • Patent number: 8076429
    Abstract: A high impact strength random block copolymer including (a) about 65-97 wt. % of a crystalline propylene/ethylene copolymer A containing from about 0.5 wt. % to about 6 wt. % derived from ethylene and from about 94 wt. % to about 99.5 wt. % derived from propylene, and (b) about 3-35 wt. % of a propylene/ethylene copolymer B containing from about 8 wt. % to about 40 wt % derived from ethylene and from about 60 wt % to about 92 wt. % derived from propylene. The crystalline to amorphous ratio Lc/La of the random block copolymer ranges from about 1.00 to about 2.25. The random block copolymer is characterized by both high toughness and low haze.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: December 13, 2011
    Assignee: Lummus Novolen Technology GmbH
    Inventors: José Pezzutti, Alberto Benito, Guillermo Cassano, Leandro Roth, Werner Schoene, Hartmut Siebert, Andreas Winter, Anita Dimeska, Vassilios Galiatsatos
  • Publication number: 20110230630
    Abstract: Certain metallocene compounds are provided that, when used as a component in a supported polymerization catalyst under industrially relevant polymerization conditions, afford high molar mass homo polymers or copolymers like polypropylene or propylene/ethylene copolymers without the need for any ?-branched substituent in either of the two available 2-positions of the indenyl ligands. The substituent in the 2-position of one indenyl ligand can be any radical comprising hydrogen, methyl, or any other C2-C40 hydrocarbon which is not branched in the ?-position, and substituent in the 2-position of the other indenyl ligand can be any C5-C40 hydrocarbon radical with the proviso that this hydrocarbon radical is branched in the ?-position and that the ?-carbon atom is a quarternary carbon atom and part of a non-cyclic hydrocarbon system. This metallocene topology affords high melting point, very high molar mass homo polypropylene and very high molar mass propylene-based copolymers.
    Type: Application
    Filed: May 13, 2011
    Publication date: September 22, 2011
    Applicant: LUMMUS NOVOLEN TECHNOLOGY GMBH
    Inventors: Thorsten Sell, Andreas Winter, Matthew Grant Thorn, Anita Dimeska, Franz Langhauser
  • Publication number: 20100267907
    Abstract: Certain metallocene compounds are provided that, when used as a component in a supported polymerization catalyst under industrially relevant polymerization conditions, afford high molar mass homo polymers or copolymers like polypropylene or propylene/ethylene copolymers without the need for any ?-branched substituent in either of the two available 2-positions of the indenyl ligands. The substituent in the 2-position of one indenyl ligand can be any radical comprising hydrogen, methyl, or any other C2-C40 hydrocarbon which is not branched in the ?-position, and the substituent in the 2-position of the other indenyl ligand can be any C4-C40 hydrocarbon radical with the proviso that this hydrocarbon radical is branched in the ?-position. This metallocene topology affords high melting point, very high molar mass homo polypropylene and very high molar mass propylene-based copolymers. The activity/productivity levels of catalysts including the metallocenes of the present invention are exceptionally high.
    Type: Application
    Filed: October 25, 2007
    Publication date: October 21, 2010
    Applicant: LUMMUS NOVOLEN TECHNOLOGY GMBH
    Inventors: Anita Dimeska, Ralph-Dieter Maier, Nicola Stephanie Paczkowski, Matthew Grant Thorn, Andreas Winter, Joerg Schulte, Thorsten Sell
  • Publication number: 20100261860
    Abstract: A metallocene compound with the 4- and 7-positions on the indenyl moiety possessing large aromatic substituents is prepared in accordance with a method which produces substantially 100 percent racemic isomer. Advantageously, polymerisation catalysts including the metallocene of the invention provide superior olefin polymerisation results.
    Type: Application
    Filed: October 25, 2007
    Publication date: October 14, 2010
    Applicant: LUMMUS NOVOLEN TECHNOLOGY GMBH
    Inventors: Joerg Schulte, Thorsten Sell, Matthew Grant Thorn, Andreas Winter, Anita Dimeska
  • Publication number: 20100234507
    Abstract: A high impact strength random block copolymer including (a) about 65-97 wt. % of a crystalline propylene/ethylene copolymer A containing from about 0.5 wt. % to about 6 wt. % derived from ethylene and from about 94 wt. % to about 99.5 wt. % derived from propylene, and (b) about 3-35 wt. % of a propylene/ethylene copolymer B containing from about 8 wt. % to about 40 wt % derived from ethylene and from about 60 wt % to about 92 wt. % derived from propylene. The crystalline to amorphous ratio Lc/La of the random block copolymer ranges from about 1.00 to about 2.25. The random block copolymer is characterized by both high toughness and low haze.
    Type: Application
    Filed: March 11, 2009
    Publication date: September 16, 2010
    Inventors: Jose Pezzutti, Alberto Benito, Guillermo Cassano, Leandro Roth, Werner Schoene, Hartmut Siebert, Andreas Winter, Anita Dimeska, Vassilios Galiatsatos