Patents by Inventor Anne K. St. Clair

Anne K. St. Clair has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6372877
    Abstract: This invention relates generally to poly(aryl ether ketones) bearing alkylated side chains. It relates particularly to soluble, thermally stable, low dielectric poly(aryl ether ketones) with alkylated side chains and especially to films and coatings thereof. These poly(aryl ether ketones) have the following structural formula: wherein Y is selected from the group consisting of CF3 and CH3; and wherein R is CnH(2n+1) and n=11-18.
    Type: Grant
    Filed: June 1, 2000
    Date of Patent: April 16, 2002
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Patrick E. Cassidy, John W. Fitch, III, Scott D. Gronewald, Anne K. St. Clair, Diane M. Stoakley
  • Patent number: 6019926
    Abstract: Self-metallizing, flexible polyimide films with highly reflective surfaces are prepared by an in situ self-metallization procedure involving thermally initiated reduction of polymer-soluble silver(I) complexes. Polyamic acid solutions are doped with silver(I) acetate and solubilizing agents. Thermally curing the silver(I)-doped resins leads to flexible, metallized films which have reflectivities as high as 100%, abrasion-resistant surfaces, thermal stability and, in some cases, electrical conductivity, rendering them useful for space applications.
    Type: Grant
    Filed: February 20, 1998
    Date of Patent: February 1, 2000
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Adminstration
    Inventors: Robin E. Southward, David W. Thompson, Anne K. St. Clair, Diane M. Stoakley
  • Patent number: 5986036
    Abstract: A new holographic substrate utilizing flexible, optically transparent fluorinated polyimides. Said substrates have extremely low birefringence which results in a high signal to noise ratio in subsequent holograms. Specific examples of said fluorinated polyimides include 6FDA+APB and 6FDA+4BDAF.
    Type: Grant
    Filed: June 27, 1997
    Date of Patent: November 16, 1999
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Paul A. Gierow, William R. Clayton, Anne K. St. Clair
  • Patent number: 5889139
    Abstract: Novel polyimide copolymers containing ether linkages were prepared by the reaction of an equimolar amount of dianhydride and a combination of diamines. The polyimide copolymers described herein possess the unique features of low moisture uptake, dimensional stability, good mechanical properties, and moderate glass transition temperatures. These materials have potential application as encapsulants and interlayer dielectrics.
    Type: Grant
    Filed: February 28, 1997
    Date of Patent: March 30, 1999
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Catharine C. Fay, Anne K. St. Clair
  • Patent number: 5677418
    Abstract: A silver organic complex, such as silver acetate, is solubilized in a polyamic acid resin or soluble polyimide solution using a suitable solvent such as hexafluoroacetyl acetone. The mixture is stable and can be applied to both flat and contoured surfaces. Application can be performed by casting, dip-coating, spraying, or other suitable techniques. In addition, the mixture can be cast or extruded as a polyimide film which is not applied to an underlying substrate. Upon curing, a flexible silver coated polyimide film is produced.
    Type: Grant
    Filed: June 14, 1995
    Date of Patent: October 14, 1997
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: David W. Thompson, Maggie L. Caplan, Anne K. St. Clair
  • Patent number: 5575955
    Abstract: An electrically conductive, thermooxidatively stable poltimide, especially a film thereof, is prepared from an intimate admixture of a particular polyimide and gold (III) ions, in an amount sufficient to provide between 17 and 21 percent by weight of gold (III) ions, based on the weight of electrically conductive, thermooxidatively stable polyimide. The particular polyimide is prepared from a polyamic acid which has been synthesized from a dianhydride/diamine combination selected from the group consisting of 3,3',4,4'-benzophenonetetracarboxylic dianhydride and 2,2-bis[4-(4 -aminophenoxy)phenyl]hexafluoropropane; 3,3',4,4'-benzophenonetetracarboxylic dianhydride and 4,4'-oxydianiline; 2,2'-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride and 4,4'-oxydianiline; and 3,3'4,4'-benzophenonetetracarboxylic dianhydride and 2,2-bis(3-aminophenyl)hexafluoropropane.
    Type: Grant
    Filed: July 22, 1994
    Date of Patent: November 19, 1996
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Maggie L. Caplan, Diane M. Stoakley, Anne K. St. Clair
  • Patent number: 5520960
    Abstract: Polyimides with enhanced electrical conductivity are produced by adding a silver ion-containing additive to the polyamic acid resin formed by the condensation of an aromatic dianhydride with an aromatic diamine. After thermal treatment the resulting polyimides had surface conductivities in the range of 1.7.times.10.sup.-3 4.5 .OMEGA..sup.-1 making them useful in low the electronics industry as flexible, electrically conductive polymeric films and coatings.
    Type: Grant
    Filed: August 3, 1994
    Date of Patent: May 28, 1996
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: James D. Rancourt, Diane M. Stoakley, Maggie L. Caplan, Anne K. St. Clair, Larry T. Taylor
  • Patent number: 5502156
    Abstract: Disclosed is a thermally-stable SnO.sub.2 -surfaced polyimide film wherein the electrical conductivity of the SnO.sub.2 surface is within the range of about 3.0.times.10.sup.-3 to about 1.times.10.sup.-2 ohms.sup.-1,. Also disclosed is a method of preparing this film from a solution containing a polyamic acid and SnCl.sub.4 (DMSO).sub.2.
    Type: Grant
    Filed: July 28, 1994
    Date of Patent: March 26, 1996
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Anne K. St. Clair, Stephen A. Ezzell, Larry T. Taylor, Harold G. Boston
  • Patent number: 5428102
    Abstract: A series of polyimides based on the dianhydride of 1,4-bis(3,4-dicarboxyphenoxy)benzene (HQDEA) or on 2,2-bis[4(3-aminophenoxy)phenyl]hexafluoropropane (3-BDAF) are evolved from high molecular weight polyamic acid solutions yielding flexible free-standing films and coatings in the fully imidized form which have a dielectric constant in the range of 2.5 to 3.1 at 10 GHz.
    Type: Grant
    Filed: May 2, 1994
    Date of Patent: June 27, 1995
    Assignee: The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventors: Anne K. St. Clair, Terry L. St. Clair, William P. Winfree
  • Patent number: 5376209
    Abstract: An assembly of an article and a polyimide composition is prepared. The assembly resists dimensional change, delamination, or debonding when exposed to changes in temperature. An article is provided. A polyamic acid solution which yields a polyimide having a low coefficient of thermal expansion (CTE) was prepared. Equimolar quantities of an aromatic diamine and an aromatic dianhydride were reacted in a solvent medium to form a polyamic acid solution. A metal ion-containing additive was added to the solution. Examples of this additive are: TbCl.sub.3, DyCl.sub.3, ErCl.sub.3, TmCl.sub.3, Al(C.sub.5 H.sub.7 O.sub.2).sub.3, and Er.sub.2 S.sub.3. The polyamic acid solution was imidized and is combined with the article to form the assembly.
    Type: Grant
    Filed: October 20, 1993
    Date of Patent: December 27, 1994
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Diane M. Stoakley, Anne K. St. Clair
  • Patent number: 5367046
    Abstract: A high temperature resistant fiber, especially a polyimide fiber, having a dielectric constant less than 3 is prepared by first reacting 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane with 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride in an aprotic solvent to form a polyamic acid resin solution. The polyamic acid resin solution is then extruded into a coagulation medium to form polyamic acid fibers, which are thermally cured to their polyimide form. Alternatively, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane with 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride to form a polyamic acid, and the polyamic acid is chemically converted to its polyimide form. The polyimide is then dissolved in a solvent to form a polyimide resin solution, and the polyimide resin is extruded into a coagulation medium to form a polyimide wet gel filament. In order to obtain polyimide fibers of increased tensile properties, the polyimide wet gel filaments are stretched at elevated temperatures.
    Type: Grant
    Filed: April 10, 1992
    Date of Patent: November 22, 1994
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: William E. Dorogy, Jr., Anne K. St. Clair
  • Patent number: 5338826
    Abstract: A structure which is effective as an electrical insulator or as a transmitter-receiver of electromagnetic energy is prepared by providing a suitable substrate and covering the substrate with an adhering layer of a low dielectric, high temperature, linear aromatic polyimide.
    Type: Grant
    Filed: September 28, 1992
    Date of Patent: August 16, 1994
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administation
    Inventors: Anne K. St. Clair, Terry L. St. Clair, William P. Winfree
  • Patent number: 5248519
    Abstract: An assembly of an article and a polyimide is prepared. The assembly resists dimensional change, delamination, or debonding when exposed to changes in temperature. An article is provided. A soluble polyimide resin solution having a low coefficient of thermal expansion (CTE) was prepared by dissolving the polyimide in solvent and adding a metal ion-containing additive to the solution. Examples of this additive are: Ho(OOCCH.sub.3).sub.3, Er(NPPA).sub.3, TmCl.sub.3, and Er(C.sub.5 H.sub.7 O.sub.2).sub.3. The soluble polyimide resin is combined with the article to form the assembly.
    Type: Grant
    Filed: July 26, 1991
    Date of Patent: September 28, 1993
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Diane M. Stoakley, Anne K. St. Clair
  • Patent number: 5220070
    Abstract: A process was developed to prepare 1,3-diamino-5-pentafluorosulfanylbenzene. This process involved two steps: preparing the dinitro compound, 1,3-dinitro-5-pentafluorosulfanylbenzene, and reducing this compound to form the corresponding diamine. This diamine was reacted with various dianhydrides, diacidchlorides, and epoxy resins to form polyimides, polyamides, and crosslinked epoxies. These polymers were used to prepare semi-permeable membranes, wire coatings, and films.
    Type: Grant
    Filed: September 5, 1991
    Date of Patent: June 15, 1993
    Assignee: The United States of America as represented by the Administrator National Aeronautics and Space Administration
    Inventors: Terry L. St. Clair, Anne K. St. Clair, Joseph S. Thrasher
  • Patent number: 5218083
    Abstract: High performance, thermooxidatively stable polyimides are prepared by reacting aromatic diamines with pendant trifluoromethyl groups and dianhydrides in an amide solvent to form a poly(amic acid), followed by cyclizing the poly(amic acid) to form the corresponding polyimide, which has the following general structure: ##STR1##
    Type: Grant
    Filed: October 31, 1989
    Date of Patent: June 8, 1993
    Assignee: The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventors: Margaret K. Gerber, Terry L. St. Clair, J. Richard Pratt, Anne K. St. Clair
  • Patent number: 5218077
    Abstract: A high-temperature stable, highly optically transparent-to-colorless, low dielectric linear aromatic polyimide is prepared by reacting an aromatic diamine with 3,3'bis(3,4-dicarboxyphenoxy)diphenylmethane dianhydride in an amide solvent to form a linear aromatic polyamic acid. This polyamic acid is then cyclized to form the corresponding polyimide, which has the following general structural formula: ##STR1## wherein Ar is any aromatic or substituted aromatic group, and n is 10-100.
    Type: Grant
    Filed: August 26, 1991
    Date of Patent: June 8, 1993
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Anne K. St. Clair, Harold G. Boston, J. Richard Pratt
  • Patent number: 5093453
    Abstract: A high-temperature stable, optically transparent, low dielectric aromatic polyimide is prepared by chemically combining equimolar quantities of an aromatic dianhydride reactant and an aromatic diamine reactant, which are selected so that one reactant contains at least one Si(CH.sub.3).sub.2 group in its molecular structure, and the other reactant contains at least one --CH.sub.3 group in its molecular structure. The reactants are chemically combined in a solvent medium to form a solution of a high molecular weight polyamic acid, which is then converted to the corresponding polyimide.
    Type: Grant
    Filed: December 12, 1989
    Date of Patent: March 3, 1992
    Assignee: Administrator of the National Aeronautics and Space Administration
    Inventors: Anne K. St. Clair, Terry L. St. Clair, J. Richard Pratt
  • Patent number: 5023034
    Abstract: The invention is a process for the production of solid aromatic polyamic acid and polyimide fibers from a wet gel or coagulation bath wet get using N,N-dimethylacetamide (DMAc) solutions of the polyamic acid derived from aromatic dianhydrides such as 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and aromatic diamines such as 4,4'-oxydianiline (4,4'-ODA). By utilizing the interrelationship between coagulation medium and concentration, resin inherent viscosity, resin % solids, filament diameter, and fiber void content, it is possible to make improved polyamic acid fibers. Solid polyimide fibers, obtained by the thermal cyclization of the polyamic acid precursor, have increased tensile properties compared to fibers containing macropores from the same resin system.
    Type: Grant
    Filed: June 26, 1990
    Date of Patent: June 11, 1991
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: William E. Dorogy, Jr., Anne K. St. Clair
  • Patent number: 4902769
    Abstract: A fluorinated poly(phenylene ether ketone) having one of the following structural formulas ##STR1## wherein X is selected from the group consisting of aryl, SO.sub.2, O, CO, --C(CH.sub.3).sub.2, and S, is prepared by reacting a bisphenol with 1,1,1,3,3,3-hexafluoro-2,2-bis[4-(4-halobenzoyl)phenyl]propane (wherein halo is fluoro or chloro), which is a novel monomer formed as the reaction product of halobenzene (wherein halo is fluoro or chloro) and 1,1,1,3,3,3-hexafluoro-2,2-bis(p-chloroformylphenyl)propane.
    Type: Grant
    Filed: September 23, 1988
    Date of Patent: February 20, 1990
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Patrick E. Cassidy, Gordon L. Tullos, Anne K. St. Clair
  • Patent number: 4895972
    Abstract: Linear aromatic polyimides with low dielectric constants are produced by adding a diamic acid additive to the polyamic acid resin formed by the condensation of an aromatic dianhydride with an aromatic diamine. The resulting modified polyimide is a better electrical insulator than state-of-the-art commercially available polyimides.
    Type: Grant
    Filed: September 1, 1988
    Date of Patent: January 23, 1990
    Assignee: The United States of American as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Diane M. Stoakley, Anne K. St. Clair