Patents by Inventor Anne M. Gaffney

Anne M. Gaffney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190248717
    Abstract: A method of producing and separating an alkene, such as ethylene, from an alkane, such as ethane. The method comprises subjecting a feedstock comprising ethane to oxidative dehydrogenation to produce an ethylene stream. The ethylene stream is passed through a membrane separation unit to separate the ethylene from unreacted ethane in the ethylene stream. The ethylene is recovered from the membrane separation unit. A system configured to produce ethylene is also disclosed. The system comprises at least one ODH reactor, a heat management unit coupled to the at least one ODH reactor, and at least one membrane separation unit comprising at least one membrane. The ODH reactor is configured to convert ethane to ethylene. The heat management unit is configured to reduce a temperature of the ethylene. The at least one membrane is configured to separate the ethylene from unreacted ethane.
    Type: Application
    Filed: November 3, 2017
    Publication date: August 15, 2019
    Inventors: Anne M. Gaffney, Daniel M. Ginosar, Olivia M. Mason, Gennaro J. Maffia
  • Patent number: 6878667
    Abstract: A nickel-rhodium alloy based catalyst for catalyzing the production of synthesis gas from a light hydrocarbon and O2 by a net catalytic partial oxidation process is disclosed. Preferred nickel-rhodium alloy based catalysts comprise about 1-50 weight percent nickel and about 0.01-10 weight percent rhodium on a porous refractory support structure. In certain embodiments, the catalyst also contains a lanthanide element, zirconium, cobalt, manganese or magnesium.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: April 12, 2005
    Assignee: ConocoPhillips Company
    Inventors: Anne M. Gaffney, David R. Corbin
  • Patent number: 6677270
    Abstract: Mixed metal carbide catalysts that are active for catalyzing the net partial oxidation of methane to CO and H2 are disclosed, along with their method of making. The preferred catalysts of the invention comprise a mixture of at least two carbided metals that are prepared by the reaction of the metal oxides, alkoxides or nitrates with a hydrocarbon of the formula CnH2n+2 wherein n is an integer from 1 to 4. Optionally, the catalysts include an additional promoter and/or a catalyst support. Preferred catalysts are at least 50 wt % molybdenum, tungsten or chromium, and also contain a second metal selected from the group consisting of molybdenum, tungsten, vanadium, chromium, iron, niobium, tantalum, rhenium, cobalt, copper, tin and bismuth.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: January 13, 2004
    Assignee: ConocoPhillips Company
    Inventor: Anne M. Gaffney
  • Patent number: 6635191
    Abstract: Catalysts comprising a catalytically active metal on a NiO—MgO coated porous metal alloy support that are active for catalyzing the oxidative conversion of methane to CO and H2 are disclosed. The preferred catalytically active metal is rhodium and the porous metal alloy support is preferably a perforated fecralloy foil. A method of making the catalysts and coated supports, and processes for using the new catalysts for converting light hydrocarbons, such as methane, to synthesis gas, are disclosed.
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: October 21, 2003
    Assignee: ConocoPhillips Company
    Inventors: Juan C. Figueroa, Anne M. Gaffney, Ronald H. Mattson, Sr., Donald B. Pierce, Robert A. Oswald, Roger Song
  • Patent number: 6630078
    Abstract: Reticulated ceramic monolithic catalysts and non-poisoning catalyst supports comprising one or more metal oxides of chromium, cobalt, nickel, an alkaline earth, a rare earth, or another sinterable metal oxide that are active in any of various chemical oxidation reactions are disclosed. Methods of making the new reticulated ceramic structures comprising impregnating an organic foam or other pore-templating material are also disclosed. Processes for the catalytic conversion of light hydrocarbons to products comprising carbon monoxide and hydrogen employing reticulated ceramic catalysts are described.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: October 7, 2003
    Assignee: ConocoPhillips Company
    Inventors: Kostantinos Kourtakis, Anne M. Gaffney, Lin Wang
  • Publication number: 20020198101
    Abstract: Mixed metal carbide catalysts that are active for catalyzing the net partial oxidation of methane to CO and H2 are disclosed, along with their method of making. The preferred catalysts of the invention comprise a mixture of at least two carbided metals that are prepared by the reaction of the metal oxides, alkoxides or nitrates with a hydrocarbon of the formula CnH2n+2 wherein n is an integer from 1 to 4. Optionally, the catalysts include an additional promoter and/or a catalyst support. Preferred catalysts are at least 50 wt % molybdenum, tungsten or chromium, and also contain a second metal selected from the group consisting of molybdenum, tungsten, vanadium, chromium, iron, niobium, tantalum, rhenium, cobalt, copper, tin and bismuth.
    Type: Application
    Filed: August 5, 2002
    Publication date: December 26, 2002
    Applicant: Conoco Inc.
    Inventor: Anne M. Gaffney
  • Publication number: 20020177628
    Abstract: A process of preparing a product gas mixture comprising CO and H2 from a light hydrocarbon and O2 mixture is disclosed. The process includes contacting a reactant gas mixture comprising a C1-C5 hydrocarbon and a source of molecular oxygen with a catalytically effective amount of a supported catalyst comprising nickel and rhodium. The catalyst and reactant gas mixture is maintained at catalytic partial oxidation promoting conditions of temperature and pressure during the contacting period, which is preferably 10 milliseconds or less. Certain preferred catalysts comprise an alloy of about 1-50 weight percent nickel and about 0.01-10 weight percent rhodium on a porous refractory support structure.
    Type: Application
    Filed: April 18, 2002
    Publication date: November 28, 2002
    Applicant: Conoco Inc.
    Inventors: Anne M. Gaffney, David R. Corbin
  • Patent number: 6461539
    Abstract: Mixed metal carbide catalysts that are active for catalyzing the net partial oxidation of methane to CO and H2 are disclosed, along with their method of making. The preferred catalysts of the invention comprise a mixture of at least two carbided metals that are prepared by the reaction of the metal oxides, alkoxides or nitrates with a hydrocarbon of the formula CnH2n+2 wherein n is an integer from 1 to 4. Optionally, the catalysts include an additional promoter and/or a catalyst support. Preferred catalysts are at least 50 wt % molybdenum, tungsten or chromium, and also contain a second metal selected from the group consisting of molybdenum, tungsten, vanadium, chromium, iron, niobium, tantalum, rhenium, cobalt, copper, tin and bismuth.
    Type: Grant
    Filed: October 16, 2000
    Date of Patent: October 8, 2002
    Assignee: Conoco Inc.
    Inventor: Anne M. Gaffney
  • Patent number: 6409940
    Abstract: A process of preparing a product gas mixture comprising CO and H2 from a light hydrocarbon and O2 mixture is disclosed. The process includes contacting a reactant gas mixture comprising a C1-C5 hydrocarbon and a source of molecular oxygen with a catalytically effective amount of a supported catalyst comprising nickel and rhodium. The catalyst and reactant gas mixture is maintained at catalytic partial oxidation promoting conditions of temperature and pressure during the contacting period, which is preferably 10 milliseconds or less. Certain preferred catalysts comprise an alloy of about 10-50 weight percent nickel and about 0.01-10 weight percent rhodium on a porous refractory support structure.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: June 25, 2002
    Assignee: Conoco Inc.
    Inventors: Anne M. Gaffney, David R. Corbin
  • Patent number: 6402989
    Abstract: A process and catalyst are disclosed for the catalytic partial oxidation of light hydrocarbons to produce synthesis gas. The process involves contacting a feed stream comprising the hydrocarbon feedstock and an oxygen-containing gas with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising carbon monoxide and hydrogen in a molar ratio of about 2:1 H2:CO. A preferred supported catalyst used in the process includes nickel and magnesium oxide, with a promoter selected from the group including manganese, molybdenum, tungsten, tin, rhenium, bismuth, indium, phosphorus, and combinations thereof.
    Type: Grant
    Filed: July 27, 2000
    Date of Patent: June 11, 2002
    Assignee: Conoco Inc.
    Inventor: Anne M. Gaffney
  • Publication number: 20020035036
    Abstract: Catalysts comprising a catalytically active metal on a NiO—MgO coated porous metal alloy support that are active for catalyzing the oxidative conversion of methane to CO and H2 are disclosed. The preferred catalytically active metal is rhodium and the porous metal alloy support is preferably a perforated fecralloy foil. A method of making the catalysts and coated supports, and processes for using the new catalysts for converting light hydrocarbons, such as methane, to synthesis gas, are disclosed.
    Type: Application
    Filed: June 13, 2001
    Publication date: March 21, 2002
    Inventors: Juan C. Figueroa, Anne M. Gaffney, Ronald H. Mattson, Donald B. Pierce, Robert A. Oswald, Roger Song
  • Publication number: 20020013225
    Abstract: Thermally integrated monolith catalysts active for catalyzing the oxidative conversion of methane to CO and H2 are disclosed. The composition and multi-layer configuration facilitates heat balancing between exothermic and endothermic reactions that take place in different sections of the monolith in a short contact time syngas reactor. The monolith comprises an active catalyst material supported by a multi-layer structure made of thin, porous metal pieces, the opposing faces of which are joined together at their perimeters. The metal pieces may be perforated disks made of at least two metals or metal oxides, and may also include a metal oxide coating.
    Type: Application
    Filed: February 16, 2001
    Publication date: January 31, 2002
    Inventors: Juan C. Figueroa, Anne M. Gaffney, John E. Anderson, John J. Barnes, Robert A. Oswald, Roger Song
  • Publication number: 20020012624
    Abstract: A method is disclosed for converting light hydrocarbons to synthesis gas employing a reduced nickel alloy monolith catalyst which catalyzes a net partial oxidation reaction. Certain preferred catalysts comprise bulk Ni—Cr, Ni—Co—Cr or Ni—Rh alloy materials. A method of making a bulk nickel alloy catalyst includes depositing a combination of chromium and cobalt metals, or rhodium metal, onto a nickel metal substrate and then thermally diffusing the Cr and Co coating, or the Rh coating, into the atomic lattice of the nickel substrate to produce a bulk Ni—Co—Cr or Ni—Rh alloy monolith catalyst. Preferred 3—D catalyst configurations include perforated foil, metal gauze, metal foam and expanded metal. The catalysts are mechanically strong and self-supporting, and retain high activity and selectivity to carbon monoxide and hydrogen products under syngas production conditions of high flow rate, superatmospheric pressure and high temperature.
    Type: Application
    Filed: January 2, 2001
    Publication date: January 31, 2002
    Inventors: Juan C. Figueroa, Anne M. Gaffney, John E. Anderson, Ronald H. Mattson, Donald B. Pierce, Robert A. Oswald, Roger Song
  • Publication number: 20020009406
    Abstract: Catalysts and processes for the catalytic conversion of hydrocarbons to carbon monoxide and hydrogen employing new families of chromium-rare earth based catalysts are disclosed. One highly active and selective catalyst system, providing greater than 95% CH4 conversion, and 97-98% selectivity to CO and H2 by a net catalytic partial oxidation reaction, is a Ce—Cr—Ni containing compound. A preferred process for the catalytic conversion of a hydrocarbon comprises contacting a feed stream comprising a methane-containing hydrocarbon feedstock and an oxygen-containing gas with a chromium-rare earth containing catalyst in a short contact time reactor maintained at partial oxidation promoting conditions effective to produce synthesis gas.
    Type: Application
    Filed: February 16, 2001
    Publication date: January 24, 2002
    Inventors: Kostantinos Kourtakis, Anne M. Gaffney, Lin Wang
  • Publication number: 20020009407
    Abstract: Reticulated ceramic monolithic catalysts and non-poisoning catalyst supports comprising one or more metal oxides of chromium, cobalt, nickel, an alkaline earth, a rare earth, or another sinterable metal oxide that are active in any of various chemical oxidation reactions are disclosed. Methods of making the new reticulated ceramic structures comprising impregnating an organic foam or other pore-templating material are also disclosed. Processes for the catalytic conversion of light hydrocarbons to products comprising carbon monoxide and hydrogen employing reticulated ceramic catalysts are described.
    Type: Application
    Filed: February 16, 2001
    Publication date: January 24, 2002
    Inventors: Kostantinos Kourtakis, Anne M. Gaffney, Lin Wang
  • Publication number: 20020006374
    Abstract: Processes for the catalytic conversion of hydrocarbons to carbon monoxide and hydrogen employing new chromium-based catalysts are disclosed. One highly active and selective catalyst system, providing greater than 95% CH4 conversion, and 97-98 % selectivity to CO and H2, is a chromium-containing catalyst consisting of a CoCr2O4 cubic spinel precursor dispersed in a chromium oxide matrix. Some other preferred catalysts compositions comprise nickel-chromium containing and rare earth-chromium containing compounds.
    Type: Application
    Filed: February 16, 2001
    Publication date: January 17, 2002
    Inventors: Kostantinos Kourtakis, Anne M. Gaffney, Lin Wang
  • Publication number: 20020002794
    Abstract: A method is disclosed for converting light hydrocarbons to synthesis gas employing a reduced nickel alloy monolith catalyst which catalyzes a net partial oxidation reaction to produce an effluent stream comprising carbon monoxide and hydrogen in a ratio of about 2:1 H2/CO. Preferred catalyst beds comprise a compositionally graded axial array, or stack, of Ni—Cr, Ni—Co—Cr, or Ni—Rh monoliths, and their manner of making is disclosed. The Ni alloy monolith catalysts are mechanically strong and retain high activity and selectivity to carbon monoxide and hydrogen products under syngas production conditions of high gas space velocity, elevated pressure and high temperature.
    Type: Application
    Filed: January 2, 2001
    Publication date: January 10, 2002
    Inventors: Juan C. Figueroa, Anne M. Gaffney, John E. Anderson, Donald B. Pierce, Robert A. Oswald, Roger Song
  • Publication number: 20020004450
    Abstract: Syngas catalyst compositions supported on refractory ceramic textiles and fibrous ceramic composite catalysts are disclosed, together with their methods of making and use for catalyzing syngas production from methane by a net partial oxidation reaction. In certain preferred embodiments the active catalyst material is Rh, Ni, Cr, or combinations thereof. The ceramic textiles may be arranged in a variety of 3-D forms, such as Nextel™ or various woven or braided meshes and layers. The ceramic textile is easier to scale up to commercial reactor dimensions than the conventional foams and monoliths comprising ceramics and metals. Tolerance to thermal expansion and thermal heat integration are also improved by the new catalysts. A synthesis gas production process employs a new ceramic composite catalyst in a fixed reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising carbon monoxide and hydrogen in a molar ratio of about 2:1 H2/CO.
    Type: Application
    Filed: January 19, 2001
    Publication date: January 10, 2002
    Inventors: Anne M. Gaffney, Robert A. Oswald, Roger Song
  • Publication number: 20020000539
    Abstract: A method is disclosed for the catalytic conversion of light hydrocarbons to synthesis gas. The method involves the contacting of a feed stream comprising the hydrocarbon feedstock and an O2-containing gas with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising carbon monoxide and hydrogen. The preferred catalysts of the invention comprise bulk nickel monoliths that have been activated by heating in a reducing environment. The preferred catalysts convert hydrocarbons to syngas primarily by a predominantly partial oxidation reaction and retain a high level of activity and selectivity to carbon monoxide and hydrogen under conditions of elevated pressure, high gas space velocity and high temperature in a short contact time reactor.
    Type: Application
    Filed: January 2, 2001
    Publication date: January 3, 2002
    Inventors: Anne M. Gaffney, Robert A. Oswald, Roger Song, Juan C. Figueroa
  • Patent number: 6083870
    Abstract: Propylene is oxidized to propylene oxide in the vapor phase using an oxygen-containing gas and a supported silver catalyst comprising silver and a support comprised in whole or in substantial part of certain alkaline earth metal compounds. The alkaline earth metal compound may, for example, be a calcium compound such as calcium titanate, tribasic calcium phosphate, calcium molybdate, or calcium fluoride, a magnesium compound such as magnesium aluminate, or a strontium compound such as strontium titanate. Such supports provide significantly higher selectivity to the desired epoxide than would be expected from the performance of related materials. Propylene oxide selectivity may be further enhanced through the introduction of nitrogen oxide species such as NO, alkyl halides such as ethyl chloride, and carbon dioxide into the oxygen-containing gas.
    Type: Grant
    Filed: March 10, 1998
    Date of Patent: July 4, 2000
    Assignee: ARCO Chemical Technology, L.P.
    Inventors: Andrew P. Kahn, Anne M. Gaffney, Rangasamy Pitchai