Patents by Inventor ANNETTE R. ATKINS

ANNETTE R. ATKINS has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230078590
    Abstract: The invention features compositions and methods treating or preventing for age-related insulin resistance, type 2 diabetes and related disorders. The method involves depleting fTreg cells with an anti-ST2 antibody to decrease age-related fTreg accumulation and restore insulin sensitivity, thereby treating age-related insulin resistance, type 2 diabetes and related disorders.
    Type: Application
    Filed: July 19, 2022
    Publication date: March 16, 2023
    Applicant: Salk Institute for Biological Studies
    Inventors: Sagar P. BAPAT, Ye ZHENG, Ronald EVANS, Michael DOWNES, Annette R. ATKINS, Ruth T. YU
  • Publication number: 20220315901
    Abstract: The invention generally features compositions comprising induced pluripotent stem cell progenitors (also termed reprogramming progenitor cells) and methods of isolating such cells. The invention also provides compositions comprising induced pluripotent stem cells (iPSCs) derived from such progenitor cells. Induced pluripotent stem cell progenitors generate iPSCs at high efficiency.
    Type: Application
    Filed: December 8, 2020
    Publication date: October 6, 2022
    Applicant: SALK INSTITUTE FOR BIOLOGICAL STUDIES
    Inventors: RONALD EVANS, MICHAEL DOWNES, YASUYUKI KIDA, TERUHISA KAWAMURA, ZONG WEI, RUTH T. YU, ANNETTE R. ATKINS
  • Patent number: 11428697
    Abstract: The invention features compositions and methods treating or preventing for age-related insulin resistance, type 2 diabetes and related disorders. The method involves depleting fTreg cells with an anti-ST2 antibody to decrease age-related fTreg accumulation and restore insulin sensitivity, thereby treating age-related insulin resistance, type 2 diabetes and related disorders.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: August 30, 2022
    Assignee: SALK INSTITUTE FOR BIOLOGICAL STUDIES
    Inventors: Sagar P. Bapat, Ye Zheng, Ronald Evans, Michael Downes, Annette R. Atkins, Ruth T. Yu
  • Publication number: 20210283187
    Abstract: The invention features compositions comprising in vitro generated beta cells capable of glucose-stimulated insulin secretion, methods of inducing beta cell maturation from embryonic or induced pluripotent stem cell-derived beta-like cells, and methods of using in vitro generated beta cells for the treatment of type 1 diabetes, type 2 diabetes, or a related disorder.
    Type: Application
    Filed: January 5, 2021
    Publication date: September 16, 2021
    Applicant: SALK INSTITUTE FOR BIOLOGICAL STUDIES
    Inventors: RONALD M. EVANS, EIJI YOSHIHARA, MICHAEL R. DOWNES, RUTH T. YU, ANNETTE R. ATKINS
  • Patent number: 10920199
    Abstract: The invention generally features compositions comprising induced pluripotent stem cell progenitors (also termed reprogramming progenitor cells) and methods of isolating such cells. The invention also provides compositions comprising induced pluripotent stem cells (iPSCs) derived from such progenitor cells. Induced pluripotent stem cell progenitors generate iPSCs at high efficiency. In particular embodiments the invention is predicated upon increased expression of an estrogen related receptor and changes in the oxidative and glycolytic pathways.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: February 16, 2021
    Assignee: SALK INSTITUTE FOR BIOLOGICAL STUDIES
    Inventors: Ronald Evans, Michael Downes, Yasuyuki Kida, Teruhisa Kawamura, Zong Wei, Ruth T. Yu, Annette R. Atkins
  • Patent number: 10912800
    Abstract: The invention features compositions comprising in vitro generated beta cells capable of glucose-stimulated insulin secretion, methods of inducing beta cell maturation from embryonic or induced pluripotent stem cell-derived beta-like cells, and methods of using in vitro generated beta cells for the treatment of type 1 diabetes, type 2 diabetes, or a related disorder.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: February 9, 2021
    Assignee: SALK INSTITUTE FOR BIOLOGICAL STUDIES
    Inventors: Ronald M. Evans, Eiji Yoshihara, Michael R. Downes, Ruth T. Yu, Annette R. Atkins
  • Publication number: 20200141947
    Abstract: The invention features compositions and methods treating or preventing for age-related insulin resistance, type 2 diabetes and related disorders. The method involves depleting fTreg cells with an anti-ST2 antibody to decrease age-related fTreg accumulation and restore insulin sensitivity, thereby treating age-related insulin resistance, type 2 diabetes and related disorders.
    Type: Application
    Filed: December 4, 2019
    Publication date: May 7, 2020
    Applicant: SALK INSTITUTE FOR BIOLOGICAL STUDIES
    Inventors: SAGAR P. BAPAT, YE ZHENG, RONALD EVANS, MICHAEL DOWNES, ANNETTE R. ATKINS, RUTH T. YU
  • Patent number: 10539572
    Abstract: The invention features compositions and methods treating or preventing for age-related insulin resistance, type 2 diabetes and related disorders. The method involves depleting fTreg cells with an anti-ST2 antibody to decrease age-related fTreg accumulation and restore insulin sensitivity, thereby treating age-related insulin resistance, type 2 diabetes and related disorders.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: January 21, 2020
    Assignee: SALK INSTITUTE FOR BIOLOGICAL STUDIES
    Inventors: Sagar P. Bapat, Ye Zheng, Ronald Evans, Michael Downes, Annette R. Atkins, Ruth T. Yu
  • Publication number: 20180267059
    Abstract: The invention features compositions and methods treating or preventing for age-related insulin resistance, type 2 diabetes and related disorders. The method involves depleting fTreg cells with an anti-ST2 antibody to decrease age-related fTreg accumulation and restore insulin sensitivity, thereby treating age-related insulin resistance, type 2 diabetes and related disorders.
    Type: Application
    Filed: January 12, 2016
    Publication date: September 20, 2018
    Applicant: SALK INSTITUTE FOR BIOLOGICAL STUDIES
    Inventors: SAGAR P. BAPAT, YE ZHENG, RONALD EVANS, MICHAEL DOWNES, ANNETTE R. ATKINS, RUTH T. YU
  • Publication number: 20180044642
    Abstract: The invention generally features compositions comprising induced pluripotent stem cell progenitors (also termed reprogramming progenitor cells) and methods of isolating such cells. The invention also provides compositions comprising induced pluripotent stem cells (iPSCs) derived from such progenitor cells. Induced pluripotent stem cell progenitors generate iPSCs at high efficiency. In particular embodiments the invention is predicated upon increased expression of an estrogen related receptor and changes in the oxidative and glycolytic pathways.
    Type: Application
    Filed: February 26, 2016
    Publication date: February 15, 2018
    Applicant: Salk Institute for Biological Studies
    Inventors: Ronald EVANS, Michael DOWNES, Yasuyuki KIDA, Teruhisa KAWAMURA, Zong WEI, Ruth T. YU, Annette R. ATKINS
  • Publication number: 20170087189
    Abstract: The invention features compositions comprising in vitro generated beta cells capable of glucose-stimulated insulin secretion, methods of inducing beta cell maturation from embryonic or induced pluripotent stem cell-derived beta-like cells, and methods of using in vitro generated beta cells for the treatment of type 1 diabetes, type 2 diabetes, or a related disorder.
    Type: Application
    Filed: November 22, 2016
    Publication date: March 30, 2017
    Applicant: SALK INSTITUTE FOR BIOLOGICAL STUDIES
    Inventors: RONALD M. EVANS, EIJI YOSHIHARA, MICHAEL R. DOWNES, RUTH T. YU, ANNETTE R. ATKINS
  • Patent number: 9546379
    Abstract: The invention features compositions comprising in vitro generated beta cells capable of glucose-stimulated insulin secretion, methods of inducing beta cell maturation from embryonic or induced pluripotent stem cell-derived beta-like cells, and methods of using in vitro generated beta cells for the treatment of type 1 diabetes, type 2 diabetes, or a related disorder.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: January 17, 2017
    Assignee: Salk Institute for Biological Studies
    Inventors: Ronald M. Evans, Eiji Yoshihara, Michael R. Downes, Ruth T. Yu, Annette R. Atkins
  • Publication number: 20150368667
    Abstract: The invention features compositions comprising in vitro generated beta cells capable of glucose-stimulated insulin secretion, methods of inducing beta cell maturation from embryonic or induced pluripotent stem cell-derived beta-like cells, and methods of using in vitro generated beta cells for the treatment of type 1 diabetes, type 2 diabetes, or a related disorder.
    Type: Application
    Filed: July 7, 2015
    Publication date: December 24, 2015
    Applicant: SALK INSTITUTE FOR BIOLOGICAL STUDIES
    Inventors: RONALD M. EVANS, EIJI YOSHIHARA, MICHAEL R. DOWNES, RUTH T. YU, ANNETTE R. ATKINS