Patents by Inventor Anshu A. Pradhan

Anshu A. Pradhan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11635665
    Abstract: Various embodiments herein relate to electrochromic devices, methods of fabricating electrochromic devices, and apparatus for fabricating electrochromic devices. In a number of cases, the electrochromic device may be fabricated to include a particular counter electrode material. The counter electrode material may include a base anodically coloring material. The counter electrode material may further include one or more halogens. The counter electrode material may also include one or more additives.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: April 25, 2023
    Assignee: View, Inc.
    Inventors: Anshu A. Pradhan, Robert T. Rozbicki, Dane Gillaspie, Sridhar K. Kailasam
  • Patent number: 11630367
    Abstract: Controllers and control methods apply a drive voltage to bus bars of a thin film optically switchable device. The applied drive voltage is provided at a level that drives a transition over the entire surface of the optically switchable device but does not damage or degrade the device. This applied voltage produces an effective voltage at all locations on the face of the device that is within a bracketed range. The upper bound of this range is associated with a voltage safely below the level at which the device may experience damage or degradation impacting its performance in the short term or the long term. At the lower boundary of this range is an effective voltage at which the transition between optical states of the device occurs relatively rapidly. The level of voltage applied between the bus bars is significantly greater than the maximum value of the effective voltage within the bracketed range.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: April 18, 2023
    Assignee: View, Inc.
    Inventors: Anshu A. Pradhan, Disha Mehtani, Gordon Jack
  • Publication number: 20230114995
    Abstract: Controllers and control methods apply a drive voltage to bus bars of a thin film optically switchable device. The applied drive voltage is provided at a level that drives a transition over the entire surface of the optically switchable device but does not damage or degrade the device. This applied voltage produces an effective voltage at all locations on the face of the device that is within a bracketed range. The upper bound of this range is associated with a voltage safely below the level at which the device may experience damage or degradation impacting its performance in the short term or the long term. At the lower boundary of this range is an effective voltage at which the transition between optical states of the device occurs relatively rapidly. The level of voltage applied between the bus bars is significantly greater than the maximum value of the effective voltage within the bracketed range.
    Type: Application
    Filed: December 13, 2022
    Publication date: April 13, 2023
    Inventors: Anshu A. Pradhan, Disha Mehtani, Gordon Jack
  • Patent number: 11623433
    Abstract: Methods are provided for fabricating electrochromic devices that mitigate formation of short circuits under a top bus bar without predetermining where top bus bars will be applied on the device. Devices fabricated using such methods may be deactivated under the top bus bar, or may include active material under the top bus bar. Methods of fabricating devices with active material under a top bus bar include depositing a modified top bus bar, fabricating self-healing layers in the electrochromic device, and modifying a top transparent conductive layer of the device prior to applying bus bars.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: April 11, 2023
    Assignees: View, Inc., Corning Incorporated
    Inventors: Ronald M. Parker, Anshu A. Pradhan, Abhishek Anant Dixit, Douglas Dauson
  • Publication number: 20230108776
    Abstract: Aspects of this disclosure concern controllers and control methods for applying a drive voltage to bus bars of optically switchable devices such as electrochromic devices. Such devices are often provided on windows such as architectural glass. In certain embodiments, the applied drive voltage is controlled in a manner that efficiently drives an optical transition over the entire surface of the electrochromic device. The drive voltage is controlled to account for differences in effective voltage experienced in regions between the bus bars and regions proximate the bus bars. Regions near the bus bars experience the highest effective voltage. In some cases, feedback may be used to monitor an optical transition. In these or other cases, a group of optically switchable devices may transition together over a particular duration to achieve approximately uniform tint states over time during the transition.
    Type: Application
    Filed: October 19, 2022
    Publication date: April 6, 2023
    Inventors: Gordon Jack, Sridhar K. Kailasam, Stephen C. Brown, Anshu A. Pradhan
  • Publication number: 20230074776
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer, which are in direct contact with one another. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In addition to the improved electrochromic devices and methods for fabrication, integrated deposition systems for forming such improved devices are also disclosed.
    Type: Application
    Filed: October 28, 2022
    Publication date: March 9, 2023
    Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
  • Patent number: 11592722
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically-insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer. The interfacial region contains an ion conducting electronically-insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In various embodiments, a counter electrode is fabricated to include a base anodically coloring material and one or more additives.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: February 28, 2023
    Assignee: View, Inc.
    Inventors: Zhongchun Wang, Anshu A. Pradhan, Robert T. Rozbicki
  • Patent number: 11592724
    Abstract: Controllers and control methods apply a drive voltage to bus bars of a thin film optically switchable device. The applied drive voltage is provided at a level that drives a transition over the entire surface of the optically switchable device but does not damage or degrade the device. This applied voltage produces an effective voltage at all locations on the face of the device that is within a bracketed range. The upper bound of this range is associated with a voltage safely below the level at which the device may experience damage or degradation impacting its performance in the short term or the long term. At the lower boundary of this range is an effective voltage at which the transition between optical states of the device occurs relatively rapidly. The level of voltage applied between the bus bars is significantly greater than the maximum value of the effective voltage within the bracketed range.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: February 28, 2023
    Assignee: View, Inc.
    Inventors: Anshu A. Pradhan, Disha Mehtani, Gordon Jack
  • Patent number: 11579509
    Abstract: Aspects of this disclosure concern controllers and control methods for applying a drive voltage to bus bars of optically switchable devices such as electrochromic devices. Such devices are often provided on windows such as architectural glass. In certain embodiments, the applied drive voltage is controlled in a manner that efficiently drives an optical transition over the entire surface of the electrochromic device. The drive voltage is controlled to account for differences in effective voltage experienced in regions between the bus bars and regions proximate the bus bars. Regions near the bus bars experience the highest effective voltage.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: February 14, 2023
    Assignee: View, Inc.
    Inventors: Gordon Jack, Sridhar K. Kailasam, Stephen C. Brown, Anshu A. Pradhan
  • Patent number: 11561446
    Abstract: Electrochromic devices and methods may employ the addition of a defect-mitigating insulating layer which prevents electronically conducting layers and/or electrochromically active layers from contacting layers of the opposite polarity and creating a short circuit in regions where defects form. In some embodiments, an encapsulating layer is provided to encapsulate particles and prevent them from ejecting from the device stack and risking a short circuit when subsequent layers are deposited. The insulating layer may have an electronic resistivity of between about 1 and 108 Ohm-cm. In some embodiments, the insulating layer contains one or more of the following metal oxides: aluminum oxide, zinc oxide, tin oxide, silicon aluminum oxide, cerium oxide, tungsten oxide, nickel tungsten oxide, and oxidized indium tin oxide. Carbides, nitrides, oxynitrides, and oxycarbides may also be used.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: January 24, 2023
    Assignee: View, Inc.
    Inventors: Sridhar Karthik Kailasam, Robin Friedman, Dane Thomas Gillaspie, Anshu A. Pradhan, Robert T. Rozbicki, Disha Mehtani
  • Patent number: 11559852
    Abstract: Thin-film devices, for example electrochromic devices for windows, and methods of manufacturing are described. Particular focus is given to methods of patterning optical devices. Various edge deletion and isolation scribes are performed, for example, to ensure the optical device has appropriate isolation from any edge defects. Methods described herein apply to any thin-film device having one or more material layers sandwiched between two thin film electrical conductor layers. The described methods create novel optical device configurations.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: January 24, 2023
    Assignee: View, Inc.
    Inventors: Abhishek Anant Dixit, Todd William Martin, Anshu A. Pradhan, Fabian Strong, Robert T. Rozbicki
  • Publication number: 20230011016
    Abstract: Window controller systems and methods are disclosed herein. In some embodiments, a window controller system for controlling multiple optically switchable devices comprises a printed circuit board comprising a first plurality of footprints to which a first plurality of components is mounted and a second plurality of footprints, wherein a subset of the second plurality of footprints is populated by a second plurality of components. The first plurality of components may comprise: a plurality of insulated glass unit (IGU) controllers, each configured to control an IGU of a corresponding plurality of IGUs operatively coupled to the window controller system; and a processing unit configured to control each of the plurality of IGU controllers. The second plurality of components may be selected based on a cable type and/or a protocol type used to provide power and data signals to the printed circuit board.
    Type: Application
    Filed: July 22, 2022
    Publication date: January 12, 2023
    Inventors: Robert Michael Martinson, Feliciano Vicente Gomez-Martinez, Sajith Kamalnath Gopinathanasari, Nitesh Trikha, Stephen Clark Brown, Anshu A. Pradhan, Sridhar Karthik Kailasam
  • Patent number: 11550197
    Abstract: Methods, apparatus, and systems for mitigating pinhole defects in optical devices such as electrochromic windows. One method mitigates a pinhole defect in an electrochromic device by identifying the site of the pinhole defect and obscuring the pinhole to make it less visually discernible. In some cases, the pinhole defect may be the result of mitigating a short-related defect.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: January 10, 2023
    Assignee: View, Inc.
    Inventors: Robin Friedman, Sridhar K. Kailasam, Rao Mulpuri, Ronald M. Parker, Ronald A. Powell, Anshu A. Pradhan, Robert T. Rozbicki, Vinod Khosla
  • Patent number: 11525181
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer, which are in direct contact with one another. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In addition to the improved electrochromic devices and methods for fabrication, integrated deposition systems for forming such improved devices are also disclosed.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: December 13, 2022
    Assignee: View, Inc.
    Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
  • Publication number: 20220388900
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition. In certain embodiments, the device includes a counter electrode having an anodically coloring electrochromic material in combination with an additive.
    Type: Application
    Filed: July 29, 2022
    Publication date: December 8, 2022
    Inventors: Anshu A. Pradhan, Robert T. Rozbicki, Dane Thomas Gillaspie, Sridhar Karthik Kailasam
  • Patent number: 11520207
    Abstract: This disclosure provides systems, methods, and apparatus for controlling transitions in an optically switchable device. In one aspect, a controller for a tintable window may include a processor, an input for receiving output signals from sensors, and instructions for causing the processor to determine a level of tint of the tintable window, and an output for controlling the level of tint in the tintable window. The instructions may include a relationship between the received output signals and the level of tint, with the relationship employing output signals from an exterior photosensor, an interior photosensor, an occupancy sensor, an exterior temperature sensor, and a transmissivity sensor. In some instances, the controller may receive output signals over a network and/or be interfaced with a network, and in some instances, the controller may be a standalone controller that is not interfaced with a network.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: December 6, 2022
    Assignee: View, Inc.
    Inventors: Stephen C. Brown, Dhairya Shrivastava, Anshu A. Pradhan, Deepika Khowal, Namrata Vora
  • Patent number: 11513411
    Abstract: Certain embodiments relate to optical devices and methods of fabricating optical devices that pre-treat a sub-layer to enable selective removal of the pre-treated sub-layer and overlying layers. Other embodiments pertain to methods of fabricating an optical device that apply a sacrificial material layer.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: November 29, 2022
    Assignee: View, Inc.
    Inventors: Todd Martin, Abhishek Anant Dixit, Fabian Strong, Anshu A. Pradhan
  • Publication number: 20220357626
    Abstract: Methods, systems, apparatuses, and media for controlling optical transitions are provided. In some embodiments, a method comprises: (a) applying a drive voltage having a preset magnitude to an optically switchable device to cause the optically switchable device to transition from an initial optical state toward a target optical state; (b) measuring an open circuit voltage (Voc) of the optically switchable device and/or an amount of charge that has been delivered to the optically switchable device; (c) comparing characteristics of the measured Voc and/or the amount of charge to at least one parameter indicative of a target duration of time for the optically switchable device to transition from the initial optical state to the target optical state; (d) modifying the drive voltage to have a modified magnitude, wherein the modified magnitude is determined based at least in part on the comparison; and (e) repeating (a) and (b) until the target optical state is reached.
    Type: Application
    Filed: July 13, 2022
    Publication date: November 10, 2022
    Inventors: Stephen Clark Brown, Sridhar Karthik Kailasam, Anshu A. Pradhan
  • Publication number: 20220350217
    Abstract: The embodiments herein relate to electrochromic stacks, electrochromic devices, and methods and apparatus for making such stacks and devices. In various embodiments, an anodically coloring layer in an electrochromic stack or device is fabricated to include nickel-tungsten-tin-oxide (NiWSnO). This material is particularly beneficial in that it is very transparent in its clear state.
    Type: Application
    Filed: July 15, 2022
    Publication date: November 3, 2022
    Inventors: Dane Gillaspie, Anshu A. Pradhan, Sridhar K. Kailasam
  • Patent number: 11482147
    Abstract: The embodiments herein relate to methods for controlling an optical transition and the ending tint state of an optically switchable device, and optically switchable devices configured to perform such methods. In various embodiments, non-optical (e.g., electrical) feedback is used to help control an optical transition. The feedback may be used for a number of different purposes. In many implementations, the feedback is used to control an ongoing optical transition. In some embodiments a transfer function is used calibrate optical drive parameters to control the tinting state of optically switching devices.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: October 25, 2022
    Assignee: View, Inc.
    Inventors: Anshu A. Pradhan, Abhishek Anant Dixit