Patents by Inventor Anthony Herman van Zuilekom
Anthony Herman van Zuilekom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12091963Abstract: A method and system for performing a pressure test. The method may include inserting a formation testing tool into a wellbore to a first location within the wellbore based at least in part on a figure of merit. The formation testing tool may include at least one probe, a pump disposed within the formation testing tool and connect to the at least one probe by at least one probe channel and at least one fluid passageway, and at least one stabilizer disposed on the formation testing tool. The method may further include activating the at least one stabilizer, wherein the at least one stabilizer is activated into a surface of the wellbore and performing the pressure test and determining at least one formation property from the pressure test.Type: GrantFiled: October 30, 2023Date of Patent: September 17, 2024Assignee: Halliburton Energy Services, Inc.Inventors: Christopher Michael Jones, Bin Dai, James M. Price, Anthony Herman Van Zuilekom, Darren George Gascooke
-
Patent number: 12025002Abstract: A downhole tool comprises at least one inlet and a first pump coupled to the at least one inlet via a first flow line. The first pump is to pump at a first pump rate to extract fluid via the at least one inlet from a subsurface formation in which a borehole is created and in which the downhole tool is to be positioned. A sample chamber is coupled to the inlet via a second flow line, and a second pump is coupled to the inlet via the second flow line. The second pump is to pump at a second pump rate to extract the fluid via the at least one inlet from the subsurface formation and for storage in the sample chamber. The first pump rate is greater than the second pump rate.Type: GrantFiled: December 6, 2022Date of Patent: July 2, 2024Assignee: Halliburton Energy Services, Inc.Inventors: Christopher Michael Jones, Anthony Herman van Zuilekom, Darren George Gascooke
-
Patent number: 11976553Abstract: A test tool attached to test string comprising a fluid conduit is deployed to a test position within a wellbore. The deployment includes hydraulically isolating a portion of the wellbore proximate the test tool to form an isolation zone containing the test position. A fluid inflow test is performed within the isolation zone and an initial formation property and a fluid property are determined based on the fluid inflow test. A fluid injection test is performed within the isolation zone including applying an injection fluid through the test string into the isolation zone, wherein the flow rate or pressure of the injection fluid application is determined based, at least in part, on the at least one of the formation property and fluid property.Type: GrantFiled: March 1, 2023Date of Patent: May 7, 2024Assignee: Halliburton Energy Services, Inc.Inventors: Mark Anton Proett, Christopher Michael Jones, Michel Joseph LeBlanc, Anthony Herman van Zuilekom, Mehdi Alipour Kallehbasti
-
Patent number: 11946361Abstract: Quality factors associated with formation pressure measurements at various depths in the geologic formation are determined based on one or more well logs of formation properties in a geologic formation. A formation testing tool with two or more probes is positioned in a borehole of the geologic formation based on the quality factors. The two or more probes in the borehole perform respective formation pressure measurements, where each formation pressure measurement is performed at a different depth. The formation pressure measurements and the given distance between the two or more probes indicate a formation pressure gradient.Type: GrantFiled: May 25, 2022Date of Patent: April 2, 2024Assignee: Halliburton Energy Services, Inc.Inventors: Christopher Michael Jones, Bin Dai, Anthony Herman van Zuilekom
-
Publication number: 20240060415Abstract: A method and system for performing a pressure test. The method may include inserting a formation testing tool into a wellbore to a first location within the wellbore based at least in part on a figure of merit. The formation testing tool may include at least one probe, a pump disposed within the formation testing tool and connect to the at least one probe by at least one probe channel and at least one fluid passageway, and at least one stabilizer disposed on the formation testing tool. The method may further include activating the at least one stabilizer, wherein the at least one stabilizer is activated into a surface of the wellbore and performing the pressure test and determining at least one formation property from the pressure test.Type: ApplicationFiled: October 30, 2023Publication date: February 22, 2024Applicant: Halliburton Energy Services, Inc.Inventors: Christopher Michael Jones, Bin Dai, James M. Price, Anthony Herman Van Zuilekom, Darren George Gascooke
-
Patent number: 11851965Abstract: Disclosed are methods, systems, and devices for measuring and otherwise processing core samples. In some embodiments, a method includes containing a core sample in a containment vessel including dynamically adjusting pressure within the containment vessel to maintain a phase of fluid within the core sample. Pressure is reduced within the containment vessel. During pressure or following reduction, one or more properties of the fluid in the core sample are measured.Type: GrantFiled: October 22, 2020Date of Patent: December 26, 2023Assignee: Halliburton Energy Services, Inc.Inventors: Donald Clifford Westacott, Christopher Michael Jones, Anthony Herman van Zuilekom
-
Patent number: 11808137Abstract: A method and system for performing a pressure test. The method may include inserting a formation testing tool into a wellbore to a first location within the wellbore based at least in part on a figure of merit. The formation testing tool may include at least one probe, a pump disposed within the formation testing tool and connect to the at least one probe by at least one probe channel and at least one fluid passageway, and at least one stabilizer disposed on the formation testing tool. The method may further include activating the at least one stabilizer, wherein the at least one stabilizer is activated into a surface of the wellbore and performing the pressure test and determining at least one formation property from the pressure test.Type: GrantFiled: March 30, 2021Date of Patent: November 7, 2023Assignee: Halliburton Energy Services, Inc.Inventors: Christopher Michael Jones, Bin Dai, James M. Price, Anthony Herman Van Zuilekom, Darren George Gascooke
-
Patent number: 11795820Abstract: A downhole PVT tool for performing in-situ formation fluid phase behavior characterizations in a wellbore using pressure, volume, and temperature (PVT) measurements of the formation fluid while continuing to pump the formation fluids. The disclosed downhole PVT tool includes an intake mandrel and utilizes two individual pumps to split the formation fluid to perform PVT measurements during the fluid pump out. The downhole PVT tool, two-pump configuration permits a first pump to be used to pump formation fluid along a first flowpath and a second pump to be used to pump formation fluid along a second flowpath, with one or more sensors deployed along one of the flowpaths to perform fluid and/or gas phase behavior measurements to determine one or more properties of the formation fluid in-situ. The first pump may be utilized in the phase behavior analysis while the second pump simultaneously continues flow-through pumping of the formation fluid.Type: GrantFiled: December 28, 2022Date of Patent: October 24, 2023Assignee: Halliburton Energy Services, Inc.Inventors: Christopher Michael Jones, Darren George Gascooke, Anthony Herman Van Zuilekom, Marcus Ray Hudson
-
Patent number: 11781413Abstract: A method for performing an acid stimulation operation using a downhole tool includes conveying the downhole tool in a borehole that is formed in a subsurface formation. The downhole tool includes a chamber to store stimulation fluid comprising a stimulation acid. The downhole tool includes a fluid injector that is fluidly coupled to an output of the chamber via a flow line of the downhole tool. The method includes coating the flow line with an acid resistant fluid. The method includes injecting, from the fluid injector via the flow line, the stimulation fluid into the subsurface formation that is released through the output of the chamber.Type: GrantFiled: December 4, 2020Date of Patent: October 10, 2023Assignee: Halliburton Energy Services, Inc.Inventors: Anthony Herman van Zuilekom, Christopher Michael Jones, Darren George Gascooke
-
Publication number: 20230313674Abstract: An apparatus comprises a formation tester tool to be positioned in a borehole within a formation, wherein the formation tester tool comprises a pressure sensor and a pad that is radially extendable with respect to an axis of the formation tester tool, and wherein the pressure sensor is inside the pad. The apparatus comprises a first radially extendable inner packer that is axially above the pad with respect to the axis of the formation tester tool and a second radially extendable outer packer that is axially above the first radially extendable inner packer. The apparatus comprises a third radially extendable inner packer that is axially below the pad with respect to the axis of the formation tester tool and a fourth radially extendable outer packer that is axially below the third radially extendable inner packer.Type: ApplicationFiled: June 6, 2023Publication date: October 5, 2023Inventors: Christopher Michael Jones, Anthony Herman Van Zuilekom, Mehdi Alipour Kallehbasti
-
Patent number: 11761330Abstract: An apparatus comprises a subsurface sensor to be positioned in a wellbore formed in a subsurface formation, wherein the subsurface sensor is to detect subsurface measurements. The apparatus includes a processor and a machine-readable medium having program code executable by the processor to cause the processor to generate a combination of functions based on the subsurface measurements, wherein the combination of functions is a subset of functions from a library of functions. The program code is executable by the processor to cause the processor to determine at least one function parameter of at least one function of the combination of functions and determine at least one formation property of the subsurface formation based on the at least one function parameter.Type: GrantFiled: July 2, 2021Date of Patent: September 19, 2023Assignee: Halliburton Energy Services, Inc.Inventors: Christopher Michael Jones, Darren George Gascooke, Anthony Herman van Zuilekom, Bin Dai
-
Patent number: 11732537Abstract: A downhole probe can be utilized in a wellbore to accurately determine a relative depth between measurement locations. The downhole probe includes a measurement unit for taking downhole measurements and a detachable anchor that can grip a wellbore wall to maintain a fixed location. The measurement unit may be moved relative to anchor between the measurement locations to unspool a tether coupled between the anchor and the measurement unit. The length of the tether unspooled may provide a more accurate indication of the relative distance between the measurement locations than surface-based measurements. The detachable anchor may be retrieved for deployment at additional measurement locations or may be abandoned in the wellbore.Type: GrantFiled: September 29, 2021Date of Patent: August 22, 2023Assignee: Halliburton Energy Services, Inc.Inventors: Christopher Michael Jones, Darren George Gascooke, Anthony Herman Van Zuilekom
-
Patent number: 11719096Abstract: A method may comprise positioning a downhole fluid sampling tool into a wellbore; performing a pressure test operation within the wellbore; performing a pumpout operation within the wellbore; identifying one or more formation parameters at least in part from the at least one pressure test operation or the at least one pumpout operation; building a correlation model that relates a pumpout trend to the one or more formation parameters; determining a time when the downhole fluid sampling tool takes a clean fluid sample utilizing at least the correlation model; and acquiring the clean fluid sample with the downhole fluid sampling tool from the wellbore. Additionally, a system may comprise a downhole fluid sampling tool configured to: perform a pressure test operation within a wellbore; and perform a pumpout operation within the wellbore.Type: GrantFiled: October 24, 2022Date of Patent: August 8, 2023Assignee: Halliburton Energy Services, Inc.Inventors: Peter Ojo Olapade, Bin Dai, Christopher Michael Jones, James Martin Price, Dingding Chen, Anthony Herman Van Zuilekom
-
Patent number: 11692438Abstract: A method including, without removing a BHA from a wellbore of a well extending into a formation, extending, into an interior flow bore of the BHA, a first component of a wet latch assembly to provide an extended first component of the wet latch assembly, conveying downhole via a wireline cable, from a surface through an interior flow bore provided by a drill string, a second component of the wet latch assembly, and coupling the second component of the wet latch assembly with the extended first component of the wet latch assembly such that an electrical connection is established between the first component and the second component and between the BHA and the surface via the wireline cable, and testing the formation with a formation tester of the BHA, while providing power and/or data telemetry for the formation tester via the wet latch assembly and the wireline cable.Type: GrantFiled: June 22, 2021Date of Patent: July 4, 2023Assignee: Halliburton Energy Services, Inc.Inventors: Christopher Michael Jones, Darren George Gascooke, Anthony Herman Van Zuilekom, Glenn Andrew Wilson
-
Publication number: 20230203945Abstract: A test tool attached to test string comprising a fluid conduit is deployed to a test position within a wellbore. The deployment includes hydraulically isolating a portion of the wellbore proximate the test tool to form an isolation zone containing the test position. A fluid inflow test is performed within the isolation zone and an initial formation property and a fluid property are determined based on the fluid inflow test. A fluid injection test is performed within the isolation zone including applying an injection fluid through the test string into the isolation zone, wherein the flow rate or pressure of the injection fluid application is determined based, at least in part, on the at least one of the formation property and fluid property.Type: ApplicationFiled: March 1, 2023Publication date: June 29, 2023Inventors: Mark Anton Proett, Christopher Michael Jones, Michel Joseph LeBlanc, Anthony Herman van Zuilekom, Mehdi Alipour Kallehbasti
-
Patent number: 11686193Abstract: A method includes positioning a formation tester tool into a borehole formed within a formation and radially expanding a first and second radially extendable packers of the formation tester tool out from the formation tester tool to the formation to form a sealed volume between the first radially extendable packer and the second radially extendable packer. The method includes radially extending a pad of the formation tester tool that is positioned between the first radially extendable packer and the second radially extendable packer to form a sealed connection volume between the formation and a pressure sensor within the pad. The method includes acquiring a first pressure measurement, using the pressure sensor, from fluids in the sealed connection volume and extracting fluid from the sealed volume to reduce pressure around the pad. The method includes acquiring a second pressure measurement, using the pressure sensor, from fluids in the sealed connection volume.Type: GrantFiled: June 6, 2022Date of Patent: June 27, 2023Assignee: Halliburton Energy Services, Inc.Inventors: Christopher Michael Jones, Anthony Herman Van Zuilekom, Mehdi Alipour Kallehbasti
-
Patent number: 11661839Abstract: A method and system for performing a pressure test. The method may comprise inserting a formation testing tool into a wellbore to a first location within the wellbore, identifying one or more tool parameters of the formation testing tool, performing a first pre-test with the pressure transducer when the pressure has stabilized to identify formation parameters, inputting the formation parameters and the one or more tool parameters into a forward model, changing the one or more tool parameters to a second set of tool parameters; performing a second pre-test with the second set of tool parameters; and comparing the first pre-test to the second pre-test. A system may comprise at least one probe, a pump disposed within the formation testing tool, at least one stabilizer, a pressure transducer disposed at least partially in the at least one fluid passageway, and an information handling system.Type: GrantFiled: February 26, 2021Date of Patent: May 30, 2023Assignee: Halliburton Energy Services, Inc.Inventors: Christopher Michael Jones, Bin Dai, James M. Price, Anthony Herman Van Zuilekom, Darren George Gascooke
-
Patent number: 11655705Abstract: An apparatus includes a formation tester tool to be positioned in a borehole within a formation, wherein the formation tester tool comprises a pressure sensor and a pad that is radially extendable with respect to an axis of the formation tester tool, and wherein the pressure sensor is inside the pad. The formation tester tool includes first and second inner radially extendable packers that are axially above and below the pad, respectively, with respect to the axis of the formation tester tool. The apparatus includes a first outer radially extendable packer that is axially above the first inner radially extendable packer with respect to the axis of the formation tester tool and a second outer radially extendable packer that is axially below the second inner radially extendable packer with respect to the axis of the formation tester tool.Type: GrantFiled: June 6, 2022Date of Patent: May 23, 2023Assignee: Halliburton Energy Services, Inc.Inventors: Christopher Michael Jones, Anthony Herman Van Zuilekom, Mehdi Alipour Kallehbasti
-
Patent number: 11643928Abstract: A siphon pump chimney can be used in a mini-drillstem test to increase formation fluid flow rates. A formation tester can be coupled to a siphon pump chimney via a wet connect assembly to transfer formation fluid from a fluid-bearing formation. The siphon pump chimney can receive the formation fluid through the wet connect and disperse the formation fluid into a drill pipe that is flowing drilling fluid. The siphon pump chimney can include check valves to prevent the drilling fluid from entering the siphon pump chimney. The siphon pump chimney can be configured to have a variable height that can reduce pressure within the siphon pump chimney to a pressure value that can be close to or less than the formation pressure, which can allow a pump to operate at high flow rates or be bypassed in a free flow configuration.Type: GrantFiled: December 1, 2021Date of Patent: May 9, 2023Assignee: Halliburton Energy Services, Inc.Inventors: Christopher Michael Jones, Darren George Gascooke, Anthony Herman Van Zuilekom, Etienne Marcel Samson, Michael Thomas Pelletier, Mehdi Alipour Kallehbasti
-
Publication number: 20230137185Abstract: A downhole PVT tool for performing in-situ formation fluid phase behavior characterizations in a wellbore using pressure, volume, and temperature (PVT) measurements of the formation fluid while continuing to pump the formation fluids. The disclosed downhole PVT tool includes an intake mandrel and utilizes two individual pumps to split the formation fluid to perform PVT measurements during the fluid pump out. The downhole PVT tool, two-pump configuration permits a first pump to be used to pump formation fluid along a first flowpath and a second pump to be used to pump formation fluid along a second flowpath, with one or more sensors deployed along one of the flowpaths to perform fluid and/or gas phase behavior measurements to determine one or more properties of the formation fluid in-situ. The first pump may be utilized in the phase behavior analysis while the second pump simultaneously continues flow-through pumping of the formation fluid.Type: ApplicationFiled: December 28, 2022Publication date: May 4, 2023Applicant: Halliburton Energy Services, Inc.Inventors: Christopher Michael Jones, Darren George Gascooke, Anthony Herman Van Zuilekom, Marcus Ray Hudson