Patents by Inventor Anthony J. Li

Anthony J. Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200398042
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 24, 2020
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde
  • Publication number: 20200384261
    Abstract: A medical device system for delivering a neuromodulation therapy includes a delivery tool for deploying an implantable medical device at a neuromodulation therapy site. The implantable medical device includes a housing, an electronic circuit within the housing, and an electrical lead comprising a lead body extending between a proximal end coupled to the housing and a distal end extending away from the housing and at least one electrode carried by the lead body. The delivery tool includes a first cavity for receiving the housing and a second cavity for receiving the lead. The first cavity and the second cavity are in direct communication for receiving and deploying the housing and the lead coupled to the housing concomitantly as a single unit.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 10, 2020
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C.M. Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
  • Publication number: 20200384260
    Abstract: An implantable medical device (IMD) has a housing enclosing an electronic circuit. The housing includes a first housing portion, a second housing portion and a joint coupling the first housing portion to the second housing portion. A polymer seal is positioned in the joint in various embodiments. Other embodiments of an IMD housing are disclosed.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 10, 2020
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde, David A. Dinsmoor, Duane L. Bourget, Forrest C. M. Pape, Joel A. Anderson, Stephen J. Roddy, Timothy J. Denison, Todd V. Smith
  • Publication number: 20200384259
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 10, 2020
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C M Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
  • Publication number: 20200376255
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 3, 2020
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde, David A. Dinsmoor, Duane L. Bourget, Forrest C M Pape, Gabriela C. Molnar, Joel A. Anderson, Michael J. Ebert, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Timothy J. Denison, Todd V. Smith
  • Publication number: 20200376259
    Abstract: A medical device system for delivering a neuromodulation therapy includes a delivery tool for deploying an implantable medical device at a neuromodulation therapy site. The implantable medical device includes a housing, an electronic circuit within the housing, and an electrical lead comprising a lead body extending between a proximal end coupled to the housing and a distal end extending away from the housing and at least one electrode carried by the lead body. The delivery tool includes a first cavity for receiving the housing and a second cavity for receiving the lead. The first cavity and the second cavity are in direct communication for receiving and deploying the housing and the lead coupled to the housing concomitantly as a single unit.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 3, 2020
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C M Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
  • Publication number: 20200376256
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 3, 2020
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde
  • Publication number: 20200376257
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 3, 2020
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, Eric H. Bonde, Erik R. Scott, Gabriela C. Molnar, Gordon O. Munns, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Thomas P. Miltich, Todd V. Smith, Xuan K. Wei
  • Patent number: 10537963
    Abstract: A system and method of forming a sapphire component. The method may include disposing an absorptive-barrier layer on a first surface of a sapphire substrate, performing a cut in the sapphire substrate using a laser beam incident on the absorptive-barrier layer, and forming and removing molten sapphire from the cut. The method may also include shielding a region of the first surface that is adjacent to the cut from the molten sapphire using the absorptive-barrier layer, and removing the absorptive-barrier layer from the first surface of the sapphire substrate.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: January 21, 2020
    Assignee: APPLE INC.
    Inventors: Michael M. Li, Anthony J. Richter, Yulei Sun, Raul A. Molina
  • Patent number: 10450650
    Abstract: The present invention relates to a method of manufacturing large area graphene for graphene-based photonics devices such as bolometric graphene detectors, or for use as a saturable absorber in ultra-high bandwidth detectors for producing ultrafast laser pulses. The method includes: growing a first graphene layer on one side of a metal substrate, and a second graphene layer on another side of the metal substrate; coating the first graphene layer with a plurality of resist layers including a low molecular weight polymethylmethacrylate, and a high molecular weight polymethylmethacrylate; removing the second graphene layer and the metal substrate to reveal the first graphene layer; disposing the first graphene layer on an optical substrate; and removing the plurality of resist layers from the first graphene layer to reveal a final graphene layer, which can be used as the basis to manufacture a multilayer graphene structure for graphene detectors.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: October 22, 2019
    Assignee: The United States of America as represented by the Admininstrator of the National Aeronautics and Space Administration
    Inventors: Mahmooda Sultana, Mary J. Li, Anthony W. Yu
  • Publication number: 20190275343
    Abstract: Methods and devices are provided for detecting a magnetic field in a presence of an implantable medical device (IMD). The IMD includes at least one electrode and a magnetic detection sensor configured to detect a magnetic field of an external magnetic source. The IMD includes a notification circuit, and an arrhythmia circuit configured to analyze cardiac signals sensed by the electrode and to deliver a therapy based on the cardiac signals. The IMD includes an electronics circuit that is configured to suspend the delivery of the therapy in response to detection of the magnetic field by the magnetic field sensor. The electronics circuit is configured to trigger the notification circuit to generate a notification output in response to the detection of the magnetic field indicating that the therapy has been suspended.
    Type: Application
    Filed: March 6, 2018
    Publication date: September 12, 2019
    Inventors: Anthony J. LI, Xing PEI
  • Patent number: 10191674
    Abstract: A consistency checker is configured to perform repairs to one or more multi-level dense tree metadata structures shared between volumes managed by a volume layer of a storage input/output (I/O) stack executing on one or more nodes of a cluster. The volumes include a parent volume and a snapshot and/or clone, wherein the snapshot/clone may be represented as an independent volume, and embodied as a respective read-only copy (snapshot) or read-write copy (clone) of the parent volume. Illustratively, the consistency checker verifies and/or fixes (i.e., repairs) on-disk structures of the volume layer, e.g., the shared dense tree, according to a distributed repair procedure that maintains consistency properties across all volumes in a volume family and avoid cyclic repairs made in the context of different volumes sharing the dense tree.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: January 29, 2019
    Assignee: NetApp, Inc.
    Inventors: Prahlad Purohit, Vidhyalakshmi Venkitakrishnan, Anthony J. Li
  • Publication number: 20170300248
    Abstract: A consistency checker is configured to perform repairs to one or more multi-level dense tree metadata structures shared between volumes managed by a volume layer of a storage input/output (I/O) stack executing on one or more nodes of a cluster. The volumes include a parent volume and a snapshot and/or clone, wherein the snapshot/clone may be represented as an independent volume, and embodied as a respective read-only copy (snapshot) or read-write copy (clone) of the parent volume. Illustratively, the consistency checker verifies and/or fixes (i.e., repairs) on-disk structures of the volume layer, e.g., the shared dense tree, according to a distributed repair procedure that maintains consistency properties across all volumes in a volume family and avoid cyclic repairs made in the context of different volumes sharing the dense tree.
    Type: Application
    Filed: April 15, 2016
    Publication date: October 19, 2017
    Inventors: Prahlad Purohit, Vidhyalakshmi Venkitakrishnan, Anthony J. Li
  • Publication number: 20170212919
    Abstract: A bottom-up technique repairs a data structure, e.g., a multi-level dense tree, used to organize volume metadata as metadata entries managed by a volume layer of a storage input/output (I/O) stack executing on one or more nodes of a cluster. The bottom-up repair technique implements a progressive repair algorithm that initially involves traversing each level of the dense tree to determine consistency of metadata entries by ensuring that the entries, e.g., (i) monotonically increase, (ii) do not overlap and (iii), if appropriate, reference (point to) existing entries of a lower level. The technique detects and corrects inconsistencies by, e.g., deleting out-of-order and overlapping entries, and adjusting the range of an index entry to reference the corresponding lower level entry. The technique then examines whether metadata entries at a lower level of the tree are referenced (pointed to) by corresponding index entries in an upper (parent) level.
    Type: Application
    Filed: January 25, 2016
    Publication date: July 27, 2017
    Inventors: Anthony J. Li, Srinath Krishnamachari, Ling Zheng
  • Patent number: 9094237
    Abstract: A network device routes data packets by storing the packets in a switching memory as a function of a destination address of the packet. The switching memory comprises switching memory queues that are mapped to ports of the device. A header of a received packet is examined to determine the network destination address to which it is to be routed, and a destination queue is assigned to the packet based on the destination address. Thereafter, the packet is divided into cells, and the cells are written to contiguous locations in the destination queue.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: July 28, 2015
    Assignee: Cisco Technology, Inc.
    Inventors: Peter M. Barnes, Nikhil Jayaram, Anthony J. Li, William L. Lynch, Sharad Mehrotra
  • Patent number: 8743679
    Abstract: Diversity constraints with respect to connections or links in a client layer are conveyed to a server layer where those links or connections are served by paths in the server layer. A network device in the server layer stores data associated paths in the server layer with identifiers for connections in the client layer. The network device in the server layer receives from a network device in the client layer a request to set up a path in the server layer for a connection in the client layer. The network device in the server layer receives information describing the diversity requirements associated with connections in the client layer. The server layer network device computes a route in the server layer for the connection specified in the request based on the diversity requirements.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: June 3, 2014
    Assignee: Cisco Technology, Inc.
    Inventors: Ornan Gerstel, Anthony J. Li, Clarence Filsfils
  • Publication number: 20120320921
    Abstract: A network device routes data packets by storing the packets in a switching memory as a function of a destination address of the packet. The switching memory comprises switching memory queues that are mapped to ports of the device. A header of a received packet is examined to determine the network destination address to which it is to be routed, and a destination queue is assigned to the packet based on the destination address. Thereafter, the packet is divided into cells, and the cells are written to contiguous locations in the destination queue.
    Type: Application
    Filed: August 31, 2012
    Publication date: December 20, 2012
    Applicant: Cisco Technology Inc.
    Inventors: Peter M. BARNES, Nikhil JAYARAM, Anthony J. LI, William L. LYNCH, Shared MEHROTRA
  • Patent number: 8270401
    Abstract: A method for routing and switching data packets from one or more incoming links to one or more outgoing links of a router. The method comprises receiving a data packet from the incoming link, assigning at least one outgoing link to the data packet based on the destination address of the data packet, and after the assigning operation, storing the data packet in a switching memory based on the assigned outgoing link. The data packet extracted from the switching memory, and transmitted along the assigned outgoing link. The router may include a network processing unit having one or more systolic array pipelines for performing the assigning operation.
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: September 18, 2012
    Assignee: Cisco Technology, Inc.
    Inventors: Peter M. Barnes, Nikhil Jayaram, Anthony J. Li, William L. Lynch, Sharad Mehrotra
  • Publication number: 20120221624
    Abstract: Diversity constraints with respect to connections or links in a client layer are conveyed to a server layer where those links or connections are served by paths in the server layer. A network device in the server layer stores data associated paths in the server layer with identifiers for connections in the client layer. The network device in the server layer receives from a network device in the client layer a request to set up a path in the server layer for a connection in the client layer. The network device in the server layer receives information describing the diversity requirements associated with connections in the client layer. The server layer network device computes a route in the server layer for the connection specified in the request based on the diversity requirements.
    Type: Application
    Filed: February 28, 2011
    Publication date: August 30, 2012
    Applicant: CISCO TECHNOLOGY, INC.
    Inventors: Ornan Gerstel, Anthony J. Li, Clarence Filsfils
  • Patent number: 8171163
    Abstract: A method for tracking a transmission status of one or more data elements to one or more devices. In one example, the method includes providing a list including one or more devices and one or more data elements; processing the list to determine a data element of the one or more data elements to transmit to a device of one of the one or more devices; and upon successfully transmitting the data element to the device, adjusting the list so that the list indicates that the device has received the transmitted data element. In this manner, the status of whether a particular data element has been sent to a particular device can be easily derived from the list.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: May 1, 2012
    Assignee: Cisco Technology, Inc.
    Inventors: Anthony J. Li, Rex Emmanuel Fernando, Henk H. W. Smit, Hasmit S. Grover, Avneesh Sachdev