Patents by Inventor Anthony M. Gades

Anthony M. Gades has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11896433
    Abstract: Ultrasound image devices, systems, and methods are provided. In one embodiment, an ultrasound imaging system includes an interface coupled to an ultrasound imaging component and configured to receive a plurality of image data frames representative of a subject's body including at least a portion of a lung; a processing component in communication with the interface and configured to determine a metric for each image data frame of the plurality of image data frames based on a threshold comparison; and determine a dynamic air bronchogram (AB) condition of the subject's body based on a variation across the metrics of the plurality of image data frames. In one embodiment, the processing component is configured to determine differential data frames based on differences across consecutive image data frames of the plurality of image data frames; and determine a dynamic AB condition of the subject's body based on the differential data frames.
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: February 13, 2024
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Jingping Xu, Balasundar Iyyavu Raju, Shougang Wang, Anthony M. Gades
  • Publication number: 20230186504
    Abstract: In a method for making a measurement of the hip in an ultrasound image, an ultrasound image of the hip is obtained. A spatial coherence map associated with one or more lags of the ultrasound waves associated with the ultrasound image is also obtained. Then a quality metric is determined based on the ultrasound image of the hip and the spatial coherence map. The quality metric indicates the suitability of the ultrasound image for making the measurement of the hip. If the quality metric indicates that the ultrasound image is above a threshold quality, then the method then comprises indicating that the ultrasound image is suitable for making the measurement of the hip.
    Type: Application
    Filed: May 8, 2021
    Publication date: June 15, 2023
    Inventors: Jing Ping Xu, Anthony M. Gades
  • Publication number: 20220225966
    Abstract: Systems, devices, and methods are provided to provide serial monitoring for a patient. An ultrasound system is provided which may include subdividing a portion of the anatomy of a patient into a number of zones. Imaging data may be received by an imaging device. This imaging data may be used to generate a severity score for each zone based on imaging parameters within the imaging data. Changes in the severity score for each zone may be displayed over time, such that a medical professional may monitor each zone in a serial manner.
    Type: Application
    Filed: May 19, 2020
    Publication date: July 21, 2022
    Inventors: Balasundar Iyyavu Raju, Anthony M. Gades, Jing Ping Xu
  • Publication number: 20220096047
    Abstract: The present invention proposes an apparatus (120) and method for detecting bone fracture of a subject on basis of ultrasound images. The apparatus (120) comprises a first fracture detector (122) and a second fracture detector (124). The first fracture detector (122) is configured to receive a first ultrasound image of a region of the subject, to identify a bone in the first ultrasound image, to identify at least one focus area within the region on basis of the identified bone, to generate focus area information indicating position of the at least one focus area, and to instruct an acquisition of a second ultrasound image of the region acquired based on the generated focus area information. The second fracture detector (124) is configured to receive the second ultrasound image, and to detect bone fracture on the basis of the second ultrasound image.
    Type: Application
    Filed: November 28, 2019
    Publication date: March 31, 2022
    Inventors: Jing Ping XU, Balasundar Iyyavu RAJU, Anthony M. Gades
  • Patent number: 11191518
    Abstract: The present invention proposes an ultrasound system and a method of detecting lung sliding on the basis of a temporal sequence of ultrasound data frames of a first region of interest. The first region of interest includes a pleural interface of a lung. A sub-region identifier (410) is configured to identify, for each of the ultrasound data frames, a sub-region of a scanned region of the ultrasound data frame, the sub-region comprising at least part of the pleural interface; a lung sliding detector (420) is configured to derive a parametric map for the sub-region on the basis of at least two ultrasound data frames of the temporal sequence, parametric values of the parametric map indicating a degree of tissue motion over the at least two ultrasound frames; wherein the lung sliding detector is further configured to extract data of the sub-regions from the at least two ultrasound data frames, and to derive the parametric map on the basis of the extracted data.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: December 7, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Shougang Wang, Balasudar Iyyavu Raju, Jingping Xu, Anthony M. Gades, McKee Dunn Poland, Shiwei Zhou
  • Patent number: 11185311
    Abstract: Extracorporeal motion (130) relative to a medical subject being imaged is detected, through the imaging or from motion detectors on the imaging probe, and either backed out of the medical images so that it can be determined whether lung sliding exists or measured to determine whether lung sliding detection is to be suspended due to excessive extracorporeal motion. Image sub-regions (164, 168) corresponding to respective ones of the images are selected for image-to-image comparison such that the selected sub-regions contain only body tissue that is, with respect to imaging depth in the acquiring of the images, shallower than an anatomical landmark within the images. Based on a result of the comparing, lung sliding detection that entails examining image data deeper than the landmark may be initialized.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: November 30, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Balasundar Iyyavu Raju, Jingping Xu, Shougang Wang, Shiwei Zhou, Anthony M. Gades
  • Patent number: 11134916
    Abstract: The invention relates to an ultrasound system (100) for sequentially performing a predetermined procedure for each of at least one region of interest. The ultrasound system (100) comprises an ultrasound probe (101) configured to transmit a first ultrasound signal (SG1) towards a region of interest and receive echo signals from the region of interest. The ultrasound system (100) also comprises a motion sensor (102) configured to detect a motion of the ultrasound probe (101) and generate a motion signal (MS) for indicating the motion of the ultrasound probe (101). The ultrasound system (100) also comprises a processor (103) configured to perform a predetermined procedure for a region of interest on the basis of the echo signals received from the region of interest if the motion signal (MS) indicates that the ultrasound probe (101) is stationary. The invention also relates to a corresponding ultrasound method.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: October 5, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Jingping Xu, Balasundar Iyyavu Raju, Shougang Wang, Mckee Dunn Poland, Anthony M. Gades
  • Publication number: 20210128116
    Abstract: Ultrasound image devices, systems, and methods are provided. In one embodiment, an ultrasound imaging system includes an interface coupled to an ultrasound imaging component and configured to receive a plurality of image data frames representative of a subject's body including at least a portion of a lung; a processing component in communication with the interface and configured to determine a metric for each image data frame of the plurality of image data frames based on a threshold comparison; and determine a dynamic air bronchogram (AB) condition of the subject's body based on a variation across the metrics of the plurality of image data frames. In one embodiment, the processing component is configured to determine differential data frames based on differences across consecutive image data frames of the plurality of image data frames; and determine a dynamic AB condition of the subject's body based on the differential data frames.
    Type: Application
    Filed: August 16, 2018
    Publication date: May 6, 2021
    Inventors: JINGPING XU, BALASUNDAR IYYAVU RAJU, SHOUGANG WANG, ANTHONY M. GADES
  • Publication number: 20200359991
    Abstract: The present disclosure describes ultrasound imaging systems and methods configured to identify lung abnormalities by determining a uniformity characteristic of a region of interest within ultrasound image frames. Systems can include an ultrasound transducer configured to acquire echoes responsive to ultrasound pulses transmitted toward a pulmonary target region. A processor coupled with the transducer may be configured to generate an image frame from the acquired echoes and determine a uniformity characteristic of the region of interest below a pleural line in the image frame. The processor may also be configured to determine a presence or absence of a lung abnormality, e.g., lung consolidation, within the region of interest based on a value of the uniformity characteristic. If a lung abnormality has been determined to be present, the processor can generate an indicator of the same, which may be displayed on a user interface in communication with the processor.
    Type: Application
    Filed: December 28, 2018
    Publication date: November 19, 2020
    Inventors: Jingping Xu, Balasundar Iyyavu Raju, Anthony M. Gades
  • Publication number: 20190150889
    Abstract: The invention relates to an ultrasound system (100) for sequentially performing a predetermined procedure for each of at least one region of interest. The ultrasound system (100) comprises an ultrasound probe (101) configured to transmit a first ultrasound signal (SG1) towards a region of interest and receive echo signals from the region of interest. The ultrasound system (100) also comprises a motion sensor (102) configured to detect a motion of the ultrasound probe (101) and generate a motion signal (MS) for indicating the motion of the ultrasound probe (101). The ultrasound system (100) also comprises a processor (103) configured to perform a predetermined procedure for a region of interest on the basis of the echo signals received from the region of interest if the motion signal (MS) indicates that the ultrasound probe (101) is stationary. The invention also relates to a corresponding ultrasound method.
    Type: Application
    Filed: December 19, 2016
    Publication date: May 23, 2019
    Inventors: JINGPING XU, BALASUNDAR IYYAVU RAJU, SHOUGANG WANG, MCKEE DUNN POLAND, ANTHONY M. GADES
  • Publication number: 20190105013
    Abstract: The present invention proposes an ultrasound system and a method of detecting lung sliding on the basis of a temporal sequence of ultrasound data frames of a first region of interest. The first region of interest includes a pleural interface of a lung. A sub-region identifier (410) is configured to identify, for each of the ultrasound data frames, a sub-region of a scanned region of the ultrasound data frame, the sub-region comprising at least part of the pleural interface; a lung sliding detector (420) is configured to derive a parametric map for the sub-region on the basis of at least two ultrasound data frames of the temporal sequence, parametric values of the parametric map indicating a degree of tissue motion over the at least two ultrasound frames; wherein the lung sliding detector is further configured to extract data of the sub-regions from the at least two ultrasound data frames, and to derive the parametric map on the basis of the extracted data.
    Type: Application
    Filed: March 24, 2017
    Publication date: April 11, 2019
    Inventors: SHOUGANG WANG, BALASUDAR IYYAVU RAJU, JINGPING XU, ANTHONY M. GADES, MCKEE DUNN POLAND, SHIWEI ZHOU
  • Publication number: 20180344293
    Abstract: Extracorporeal motion (130) relative to a medical subject being imaged is detected, through the imaging or from motion detectors on the imaging probe, and either backed out of the medical images so that it can be determined whether lung sliding exists or measured to determine whether lung sliding detection is to be suspended due to excessive extracorporeal motion. Image sub-regions (164, 168) corresponding to respective ones of the images are selected for image-to-image comparison such that the selected sub-regions contain only body tissue that is, with respect to imaging depth in the acquiring of the images, shallower than an anatomical landmark within the images. Based on a result of the comparing, lung sliding detection that entails examining image data deeper than the landmark may be initialized.
    Type: Application
    Filed: September 13, 2016
    Publication date: December 6, 2018
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Balasundar Iyyavu Raju, Jingping Xu, Shougang Wang, Shiwei Zhou, Anthony M. Gades
  • Publication number: 20120041311
    Abstract: A system and method of three dimensional acoustic imaging for medical procedure guidance includes receiving (410) an acoustic signal that is scanned to interrogate a volume of interest; determining (430) a location of a procedural device within the interrogated volume from the acoustic signal; and displaying (470) on a display device (130) a first view of a first plane perpendicular to an orientation of the procedural device. Beneficially, a second view of at least one plane perpendicular to the first plane is also displayed. Also beneficially, a third view of a third plane perpendicular to the first plane and to the second plane is also displayed. Also beneficially, the first, second, and third views are displayed at the same time.
    Type: Application
    Filed: December 7, 2009
    Publication date: February 16, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventor: Anthony M. Gades