Patents by Inventor Arie Jeffrey Den Boef

Arie Jeffrey Den Boef has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11640116
    Abstract: A method including determining a type of structural asymmetry of the target from measured values of the target, and performing a simulation of optical measurement of the target to determine a value of an asymmetry parameter associated with the asymmetry type. A method including performing a simulation of optical measurement of a target to determine a value of an asymmetry parameter associated with a type of structural asymmetry of the target determined from measured values of the target, and analyzing a sensitivity of the asymmetry parameter to change in a target formation parameter associated with the target. A method including determining a structural asymmetry parameter of a target using a measured parameter of radiation diffracted by the target, and determining a property of a measurement beam of the target based on the structural asymmetry parameter that is least sensitive to change in a target formation parameter associated with the target.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: May 2, 2023
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Arie Jeffrey Den Boef, Kaustuve Bhattacharyya
  • Patent number: 11619595
    Abstract: Systems, methods, and apparatus are provided for determining overlay of a pattern on a substrate with a mask pattern defined in a resist layer on top of the pattern on the substrate. A first grating is provided under a second grating, each having substantially identical pitch to the other, together forming a composite grating. A first illumination beam is provided under an angle of incidence along a first horizontal direction. The intensity of a diffracted beam from the composite grating is measured. A second illumination beam is provided under the angle of incidence along a second horizontal direction. The second horizontal direction is opposite to the first horizontal direction. The intensity of the diffracted beam from the composite grating is measured. The difference between the diffracted beam from the first illumination beam and the diffracted beam from the second illumination beam, linearly scaled, results in the overlay error.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: April 4, 2023
    Assignee: ASML Netherlands B.V.
    Inventor: Arie Jeffrey Den Boef
  • Publication number: 20230075781
    Abstract: Systems, methods, and apparatus are provided for determining overlay of a pattern on a substrate with a mask pattern defined in a resist layer on top of the pattern on the substrate. A first grating is provided under a second grating, each having substantially identical pitch to the other, together forming a composite grating. A first illumination beam is provided under an angle of incidence along a first horizontal direction. The intensity of a diffracted beam from the composite grating is measured. A second illumination beam is provided under the angle of incidence along a second horizontal direction. The second horizontal direction is opposite to the first horizontal direction. The intensity of the diffracted beam from the composite grating is measured. The difference between the diffracted beam from the first illumination beam and the diffracted beam from the second illumination beam, linearly scaled, results in the overlay error.
    Type: Application
    Filed: November 16, 2022
    Publication date: March 9, 2023
    Applicant: ASML Netherlands B.V.
    Inventor: Arie Jeffrey DEN BOEF
  • Publication number: 20230062585
    Abstract: Described is a metrology system for determining a characteristic of interest relating to at least one structure on a substrate, and associated method. The metrology system comprises a processor being configured to computationally determine phase and amplitude information from a detected characteristic of scattered radiation having been reflected or scattered by the at least one structure as a result of illumination of said at least one structure with illumination radiation in a measurement acquisition, and use the determined phase and amplitude to determine the characteristic of interest.
    Type: Application
    Filed: July 1, 2022
    Publication date: March 2, 2023
    Applicant: ASML Netherlands B.V.
    Inventors: Patricius Aloysius Jacobus TINNEMANS, Arie Jeffrey DEN BOEF, Armand Eugene Albert KOOLEN, Nitesh PANDEY, Vasco Tomas TENNER, Willem Marie Julia Marcel COENE, Patrick WARNAAR
  • Publication number: 20230044632
    Abstract: A dark field digital holographic microscope is disclosed which is configured to determine a characteristic of interest of a structure. The dark field digital holographic microscope comprises an illumination device configured to provide at least: a first beam pair comprising a first illumination beam of radiation (1010) and a first reference beam of radiation (1030) and a second beam pair comprising a second illumination beam of radiation (1020) and a second reference beam of radiation (1040); and one or more optical elements (1070) operable to capture a first scattered radiation and to capture a second scattered radiation scattered by the structure resultant from the first and second illumination beams respectively. The beams of the first beam pair are mutually coherent and the beams of the second beam pair are mutually coherent. The illumination device is configured to impose incoherence (ADI) between the first beam pair and second beam pair.
    Type: Application
    Filed: October 21, 2020
    Publication date: February 9, 2023
    Applicant: ASML Netherlands B.V.
    Inventors: Willem Marie Julia Marcel COENE, Arie Jeffrey DEN BOEF, Vasco Tomas TENNER, Nitesh PANDEY, Christos MESSINIS, Johannes Fitzgerald DE BOER
  • Publication number: 20230016664
    Abstract: A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer.
    Type: Application
    Filed: July 26, 2022
    Publication date: January 19, 2023
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Kaustuve BHATTACHARYYA, Henricus Wilhelmus Maria Van Buel, Christophe David Fouquet, Hendrik Jan Hidde Smilde, Maurits Van Der Schaar, Arie Jeffrey Den Boef, Richard Johannes Franciscus Van Haren, Xing Lan Liu, Johannes Marcus Maria Beltman, Andreas Fuchs, Omer Abubaker Omer Adam, Michael Kubis, Martin Jacobus Johan Jak
  • Patent number: 11549806
    Abstract: A metrology apparatus for determining a characteristic of interest of a structure on a substrate, the apparatus comprising: a radiation source configured to generate illumination radiation; at least two illumination branches comprising at least one optical fiber and configured to illuminate a structure on a substrate from different angles; and a radiation switch configured to receive the illumination radiation and transfer at least part of the radiation to a selectable one of the at least two illumination branches.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: January 10, 2023
    Assignee: ASML Netherland B.V.
    Inventors: Marinus Johannes Maria Van Dam, Arie Jeffrey Den Boef, Nitesh Pandey
  • Publication number: 20220397833
    Abstract: An alignment apparatus includes an illumination system configured to direct one or more illumination beams towards an alignment target and receive the diffracted beams from the alignment target. The alignment apparatus also includes a self-referencing Interferometer configured to generate two diffraction sub-beams, wherein the two diffraction sub-beams are orthogonally polarized, rotated 180 degrees with respect to each other around an alignment axis, and spatially overlapped. The alignment apparatus further includes a beam analyzer configured to generate interference between the overlapped components of the diffraction sub-beams and produce two orthogonally polarized optical branches, and a detection system configured to determine a position of the alignment target based on light intensity measurement of the optical branches, wherein the measured light intensity is temporally modulated by a phase modulator.
    Type: Application
    Filed: August 5, 2020
    Publication date: December 15, 2022
    Applicants: ASML Netherlands B.V., ASML Holding N.V.
    Inventors: Franciscus Godefridus Casper BIJNEN, Muhsin ERALP, Simon Reinald HUISMAN, Arie Jeffrey DEN BOEF
  • Patent number: 11525786
    Abstract: An apparatus and method to determine a property of a substrate by measuring, in the pupil plane of a high numerical aperture lens, an angle-resolved spectrum as a result of radiation being reflected off the substrate. The property may be angle and wavelength dependent and may include the intensity of TM- and TE-polarized radiation and their relative phase difference.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: December 13, 2022
    Assignee: ASML Netherlands B.V.
    Inventors: Arie Jeffrey Den Boef, Arno Jan Bleeker, Youri Johannes Laurentius Maria Van Dommelen, Mircea Dusa, Antoine Gaston Marie Kiers, Paul Frank Luehrmann, Henricus Petrus Maria Pellemans, Maurits Van Der Schaar, Cédric Désiré Grouwstra, Markus Gerardus Martinus Maria Van Kraaij
  • Publication number: 20220342228
    Abstract: A system includes a radiation source and a phased array. The phased array includes optical elements, waveguides and phase modulators. The phased array generates a beam of radiation. The optical elements radiate radiation waves. The waveguides guide radiation from the radiation source to the optical elements. The phase modulators adjust phases of the radiation waves such that the radiation waves accumulate to form the beam. An amount of incoherence of the beam is based on randomization of the phases.
    Type: Application
    Filed: September 27, 2020
    Publication date: October 27, 2022
    Applicants: ASML Netherlands B.V., ASML Holding N.V.
    Inventors: Irwan Dani SETIJA, Arie Jeffrey DEN BOEF, Mohamed SWILLAM, Arjan Johannes Anton BEUKMAN
  • Publication number: 20220299751
    Abstract: Disclosed is a phase modulator apparatus comprises at least a first phase modulator for modulating input radiation, and a metrology device comprising such a phase modulator apparatus. The first phase modulator comprises a first moving grating in at least an operational state for diffracting the input radiation and Doppler shifting the frequency of the diffracted radiation; and a first compensatory grating element comprising a pitch configured to compensate for wavelength dependent dispersion of at least one diffraction order of said diffracted radiation.
    Type: Application
    Filed: July 27, 2020
    Publication date: September 22, 2022
    Applicant: ASML Netherlands B.V.
    Inventors: Arie Jeffrey DEN BOEF, Simon HUISMAN
  • Publication number: 20220283516
    Abstract: A sensor apparatus includes a sensor chip, an illumination system, a first optical system, a second optical system, and a detector system. The illumination system is coupled to the sensor chip and transmits an illumination beam along an illumination path. The first optical system is coupled to the sensor chip and includes a first integrated optic to configure and transmit the illumination beam toward a diffraction target on a substrate, disposed adjacent to the sensor chip, and generate a signal beam including diffraction order sub-beams generated from the diffraction target. The second optical system is coupled to the sensor chip and includes a second integrated optic to collect and transmit the signal beam from a first side to a second side of the sensor chip. The detector system is configured to measure a characteristic of the diffraction target based on the signal beam transmitted by the second optical system.
    Type: Application
    Filed: August 5, 2020
    Publication date: September 8, 2022
    Applicants: ASML Holding N.V., ASML Netherlands B.V.
    Inventors: Mohamed SWILLAM, Stephen ROUX, Tamer Mohamed Tawfik Ah ELAZHARY, Arie Jeffrey DEN BOEF
  • Publication number: 20220276180
    Abstract: An illumination and detection apparatus for a metrology tool, and associated method. The apparatus includes an illumination arrangement operable to produce measurement illumination having a plurality of discrete wavelength bands and having a spectrum having no more than a single peak within each wavelength band. The detection arrangement includes a detection beamsplitter to split scattered radiation into a plurality of channels, each channel corresponding to a different one of the wavelength bands; and at least one detector for separate detection of each channel.
    Type: Application
    Filed: July 14, 2020
    Publication date: September 1, 2022
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Nitesh PANDEY, Simon Gijsbert Josephus MATHIJSSEN, Kaustuve BHATTACHARYYA, Arie Jeffrey DEN BOEF
  • Publication number: 20220276569
    Abstract: Methods and systems for determining information about a target structure are disclosed. In one arrangement, a value of an asymmetry indicator for the target structure is obtained. The value of the asymmetry indicator represents an amount of an overlay independent asymmetry in the target structure. An error in an initial overlay measurement performed on the target structure at a previous time is estimated. The estimation is performed using the obtained value of the asymmetry indicator and a relationship between values of the asymmetry indicator and overlay measurement errors caused at least partially by overlay independent asymmetries. An overlay in the target structure is determined using the initial overlay measurement and the estimated error.
    Type: Application
    Filed: July 17, 2020
    Publication date: September 1, 2022
    Applicant: ASML Netherlands B.V.
    Inventors: Arie Jeffrey DEN BOEF, Kaustuve BHATTACHARYYA, Keng-Fu CHANG, Simon Gijsbert Josephus MATHIJSSEN
  • Patent number: 11428521
    Abstract: A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: August 30, 2022
    Assignee: ASML Netherlands B.V.
    Inventors: Kaustuve Bhattacharyya, Henricus Wilhelmus Maria Van Buel, Christophe David Fouquet, Hendrik Jan Hidde Smilde, Maurits Van der Schaar, Arie Jeffrey Den Boef, Richard Johannes Franciscus Van Haren, Xing Lan Liu, Johannes Marcus Maria Beltman, Andreas Fuchs, Omer Abubaker Omer Adam, Michael Kubis, Martin Jacobus Johan Jak
  • Patent number: 11429029
    Abstract: A method includes projecting an illumination beam of radiation onto a metrology target on a substrate, detecting radiation reflected from the metrology target on the substrate, and determining a characteristic of a feature on the substrate based on the detected radiation, wherein a polarization state of the detected radiation is controllably selected to optimize a quality of the detected radiation.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: August 30, 2022
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Maurits Van Der Schaar, Patrick Warnaar, Youping Zhang, Arie Jeffrey Den Boef, Feng Xiao, Martin Ebert
  • Patent number: 11415900
    Abstract: Described is a metrology system for determining a characteristic of interest relating to at least one structure on a substrate, and associated method. The metrology system comprises a processor being configured to computationally determine phase and amplitude information from a detected characteristic of scattered radiation having been reflected or scattered by the at least one structure as a result of illumination of said at least one structure with illumination radiation in a measurement acquisition, and use the determined phase and amplitude to determine the characteristic of interest.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: August 16, 2022
    Assignee: ASML Netherlands B.V.
    Inventors: Patricius Aloysius Jacobus Tinnemans, Arie Jeffrey Den Boef, Armand Eugene Albert Koolen, Nitesh Pandey, Vasco Tomas Tenner, Willem Marie Julia Marcel Coene, Patrick Warnaar
  • Patent number: 11385553
    Abstract: A method of measuring overlay uses a plurality of asymmetry measurements from locations (LOI) on a pair of sub-targets (1032, 1034) formed on a substrate (W). For each sub-target, the plurality of asymmetry measurements are fitted to at least one expected relationship (1502, 1504) between asymmetry and overlay, based on a known bias variation deigned into the sub-targets. Continuous bias variation in one example is provided by varying the pitch of top and bottom gratings (P1/P2). Bias variations between the sub-targets of the pair are equal and opposite (P2/P1). Overlay (OV) is calculated based on a relative shift (xs) between the fitted relationships for the two sub-targets. The step of fitting asymmetry measurements to at least one expected relationship includes wholly or partially discounting measurements (1506, 1508, 1510) that deviate from the expected relationship and/or fall outside a particular segment of the fitted relationship.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: July 12, 2022
    Assignee: ASML Netherlands B.V.
    Inventors: Zili Zhou, Nitesh Pandey, Olger Victor Zwier, Patrick Warnaar, Maurits Van Der Schaar, Elliott Gerard McNamara, Arie Jeffrey Den Boef, Paul Christiaan Hinnen, Murat Bozkurt, Joost Jeroen Ottens, Kaustuve Bhattacharyya, Michael Kubis
  • Publication number: 20220196393
    Abstract: A scatterometer for measuring a property of a target on a substrate includes a radiation source, a detector, and a processor. The radiation source produces a radiated spot on the target. The scatterometer adjusts a position of the radiated spot along a first direction across the target and along a second direction that is at an angle with respect to the first direction. The detector receives radiation scattered by the target. The received radiation is associated with positions of the radiated spot on the target along at least the first direction. The detector generates measurement signals based on the positions of the radiated spot on the target. The processor outputs, based on the measurement signals, a single value that is representative of the property of the target. The processor also combines the measurement signals to output a combined signal and derives, based on the combined signal, the single value.
    Type: Application
    Filed: March 11, 2022
    Publication date: June 23, 2022
    Inventors: Henricus Petrus Maria PELLEMANS, Arie Jeffrey DEN BOEF
  • Patent number: 11333985
    Abstract: The invention provides a position sensor (300) which comprises an optical system (305,306) configured to provide measurement radiation (304) to a substrate (307). The optical system is arranged to receive at least a portion of radiation (309) diffracted by a mark (308) provided on the substrate. A processor (313) is applied to derive at least one position-sensitive signal (312) from the received radiation. The measurement radiation comprises at least a first and a second selected radiation wavelength. The selection of the at least first and second radiation wavelengths is based on a position error swing-curve model.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: May 17, 2022
    Assignee: ASML Netherlands B.V.
    Inventors: Sebastianus Adrianus Goorden, Simon Reinald Huisman, Duygu Akbulut, Alessandro Polo, Johannes Antonius Gerardus Akkermans, Arie Jeffrey Den Boef