Patents by Inventor Aristos A. Aristidou

Aristos A. Aristidou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230312253
    Abstract: Yeast cells are genetically modified to disrupt a native metabolic pathway from dihydroxyacetone to glycerol. In certain aspects, the yeast cell is of the genera Kluyveromyces, Candida or Issatchenkia. In other aspects, the yeast cell is capable of producing at least one organic acid, such as lactate. The yeast cells produce significantly less glycerol than the wild-type strains, and usually produce greater yields of desired fermentation products. Yeast cells of the invention often grow well when cultivated, despite their curtailed glycerol production.
    Type: Application
    Filed: May 19, 2023
    Publication date: October 5, 2023
    Applicant: CARGILL, INCORPORATED
    Inventors: Catherine Asleson DUNDON, Pirkko SUOMINEN, Aristos ARISTIDOU, Brian J. RUSH, Kari KOIVURANTA, Benjamin Matthew HAUSE, Thomas William McMULLIN, Kevin ROBERG-PEREZ
  • Patent number: 11691817
    Abstract: Yeast cells are genetically modified to disrupt a native metabolic pathway from dihydroxyacetone to glycerol. In certain aspects, the yeast cell is of the genera Kluyveromyces, Candida or Issatchenkia. In other aspects, the yeast cell is capable of producing at least one organic acid, such as lactate. The yeast cells produce significantly less glycerol than the wild-type strains, and usually produce greater yields of desired fermentation products. Yeast cells of the invention often grow well when cultivated, despite their curtailed glycerol production.
    Type: Grant
    Filed: January 21, 2021
    Date of Patent: July 4, 2023
    Assignee: CARGILL, INCORPORATED
    Inventors: Catherine Asleson Dundon, Pirkko Suominen, Aristos Aristidou, Brian J. Rush, Kari Koivuranta, Benjamin Matthew Hause, Thomas William McMullin, Kevin Roberg-Perez
  • Publication number: 20210155411
    Abstract: Yeast cells are genetically modified to disrupt a native metabolic pathway from dihydroxyacetone to glycerol. In certain aspects, the yeast cell is of the genera Kluyveromyces, Candida or Issatchenkia. In other aspects, the yeast cell is capable of producing at least one organic acid, such as lactate. The yeast cells produce significantly less glycerol than the wild-type strains, and usually produce greater yields of desired fermentation products. Yeast cells of the invention often grow well when cultivated, despite their curtailed glycerol production.
    Type: Application
    Filed: January 21, 2021
    Publication date: May 27, 2021
    Applicant: Cargill, Incorporated
    Inventors: Catherine Asleson DUNDON, Pirrko Suominen, Aristos Aristidou, Brian J. Rush, Kari Koivuranta, Benjamin Matthew Hause, Thomas William McMullin, Kevin Roberg-Perez
  • Patent number: 10899544
    Abstract: Yeast cells are genetically modified to disrupt a native metabolic pathway from dihydroxyacetone to glycerol. In certain aspects, the yeast cell is of the genera Kluyveromyces, Candida or Issatchenkia. In other aspects, the yeast cell is capable of producing at least one organic acid, such as lactate. The yeast cells produce significantly less glycerol than the wild-type strains, and usually produce greater yields of desired fermentation products. Yeast cells of the invention often grow well when cultivated, despite their curtailed glycerol production.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: January 26, 2021
    Assignee: CARGILL, INCORPORATED
    Inventors: Catherine Asleson Dundon, Pirrko Suominen, Aristos Aristidou, Brian J. Rush, Kari Koivuranta, Benjamin Matthew Hause, Thomas William McMullin, Kevin Roberg-Perez
  • Publication number: 20200377302
    Abstract: Yeast cells are genetically modified to disrupt a native metabolic pathway from dihydroxyacetone to glycerol. In certain aspects, the yeast cell is of the genera Kluyveromyces, Candida or Issatchenkia. In other aspects, the yeast cell is capable of producing at least one organic acid, such as lactate. The yeast cells produce significantly less glycerol than the wild-type strains, and usually produce greater yields of desired fermentation products. Yeast cells of the invention often grow well when cultivated, despite their curtailed glycerol production.
    Type: Application
    Filed: March 30, 2018
    Publication date: December 3, 2020
    Applicant: Cargill Incorporated
    Inventors: Catherine Asleson Dundon, Pirrko Suominen, Aristos Aristidou, Brian J. Rush, Kari Koivuranta, Benjamin Matthew Hause, Thomas William McMullin, Kevin Roberg-Perez
  • Publication number: 20180257864
    Abstract: Yeast cells are genetically modified to disrupt a native metabolic pathway from dihydroxyacetone to glycerol. In certain aspects, the yeast cell is of the genera Kluyveromyces, Candida or Issatchenkia. In other aspects, the yeast cell is capable of producing at least one organic acid, such as lactate. The yeast cells produce significantly less glycerol than the wild-type strains, and usually produce greater yields of desired fermentation products. Yeast cells of the invention often grow well when cultivated, despite their curtailed glycerol production.
    Type: Application
    Filed: March 30, 2018
    Publication date: September 13, 2018
    Applicant: Cargill Incorporated
    Inventors: Catherine Asleson Dundon, Pirrko Suominen, Aristos Aristidou, Brian J. Rush, Kari Koivuranta, Benjamin Matthew Hause, Thomas William McMullin, Kevin Roberg-Perez
  • Publication number: 20180179557
    Abstract: The present invention provides recombinant microorganisms comprising an isobutanol producing metabolic pathway and methods of using said recombinant microorganisms to produce isobutanol. In various aspects of the invention, the recombinant microorganisms may comprise a modification resulting in the reduction of pyruvate decarboxylase and/or glycerol-3-phosphate dehydrogenase activity. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: February 12, 2018
    Publication date: June 28, 2018
    Inventors: Reid FELDMAN, Uvini GUNAWARDENA, Jun URANO, Peter MEINHOLD, Aristos ARISTIDOU, Catherine Asleson DUNDON, Christopher SMITH
  • Patent number: 9926577
    Abstract: The present invention provides recombinant microorganisms comprising an isobutanol producing metabolic pathway and methods of using said recombinant microorganisms to produce isobutanol. In various aspects of the invention, the recombinant microorganisms may comprise a modification resulting in the reduction of pyruvate decarboxylase and/or glycerol-3-phosphate dehydrogenase activity. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: March 27, 2018
    Assignee: Gevo, Inc.
    Inventors: Reid M. Renny Feldman, Uvini Gunawardena, Jun Urano, Peter Meinhold, Aristos Aristidou, Catherine Asleson Dundon, Christopher Smith
  • Patent number: 9862975
    Abstract: The present application discloses the identification of the novel K. marxianus xylose transporter genes KHT105 and RAG4, as well as the identification of a novel set of I. orientalis pentose phosphate pathway genes The present application further discloses a series of genetically modified yeast cells comprising various combinations of arabinose fermentation pathways, xylose fermentation pathways, pentose phosphate pathways, and/or xylose transporter genes, and methods of culturing these cells to produce ethanol in fermentation media containing xylose.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: January 9, 2018
    Assignee: CARGILL, INCORPORATED
    Inventors: Holly J. Jessen, Jian Yi, Joshua Lundorff, Hans Liao, Ana Negrete-Raymond, Pirkko Suominen, Aristos Aristidou
  • Patent number: 9758799
    Abstract: Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.
    Type: Grant
    Filed: July 5, 2016
    Date of Patent: September 12, 2017
    Assignee: Cargill Incorporated
    Inventors: Vineet Rajgarhia, Kari Koivuranta, Merja Penttila, Marja Ilmen, Pirkko Suominen, Aristos Aristidou, Christopher Kenneth Miller, Stacey Olson, Laura Ruohonen
  • Patent number: 9506074
    Abstract: The present invention relates to recombinant microorganisms comprising biosynthetic pathways and methods of using said recombinant microorganisms to produce various beneficial metabolites. In various aspects of the invention, the recombinant microorganisms may further comprise one or more modifications resulting in the reduction or elimination of 3 keto-acid (e.g., acetolactate and 2-aceto-2-hydroxybutyrate) and/or aldehyde-derived by-products. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces Glade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: November 29, 2016
    Assignee: GEVO, INC.
    Inventors: Thomas Buelter, Andrew Hawkins, Stephanie Porter-Scheinman, Peter Meinhold, Catherine Asleson Dundon, Aristos Aristidou, Jun Urano, Doug Lies, Matthew Peters, Melissa Dey, Justas Jancauskas, Julie Kelly, Ruth Berry
  • Publication number: 20160340697
    Abstract: Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.
    Type: Application
    Filed: July 5, 2016
    Publication date: November 24, 2016
    Inventors: Vineet Rajgarhia, Kari Koivuranta, Merja Penttila, Marja Ilmen, Pirkko Suominen, Aristos Aristidou, Christopher Kenneth Miller, Stacey Olson, Laura Ruohonen
  • Patent number: 9428776
    Abstract: Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.
    Type: Grant
    Filed: September 6, 2014
    Date of Patent: August 30, 2016
    Assignee: Cargill Incorporated
    Inventors: Pim Van Hoek, Aristos Aristidou, Brian J. Rush
  • Patent number: 9410158
    Abstract: Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: August 9, 2016
    Assignee: Cargill Incorporated
    Inventors: Vineet Rajgarhia, Kari Koivuranta, Merja Penttila, Marja Ilmen, Pirkko Suominen, Aristos Aristidou, Christopher Kenneth Miller, Stacey Olson, Laura Ruohonen
  • Publication number: 20160002676
    Abstract: The present application discloses the identification of the novel K. marxianus xylose transporter genes KHT105 and RAG4, as well as the identification of a novel set of I. orientalis pentose phosphate pathway genes The present application further discloses a series of genetically modified yeast cells comprising various combinations of arabinose fermentation pathways, xylose fermentation pathways, pentose phosphate pathways, and/or xylose transporter genes, and methods of culturing these cells to produce ethanol in fermentation media containing xylose.
    Type: Application
    Filed: September 18, 2015
    Publication date: January 7, 2016
    Inventors: Holly J. JESSEN, Jian YI, Joshua LUNDORFF, Hans LIAO, Ana NEGRETE-RAYMOND, Pirkko SUOMINEN, Aristos ARISTIDOU
  • Patent number: 9181563
    Abstract: The present application discloses the identification of the novel K. marxianus xylose transporter genes KHT105 and RAG4, as well as the identification of a novel set of I. orientalis pentose phosphate pathway genes The present application further discloses a series of genetically modified yeast cells comprising various combinations of arabinose fermentation pathways, xylose fermentation pathways, pentose phosphate pathways, and/or xylose transporter genes, and methods of culturing these cells to produce ethanol in fermentation media containing xylose.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: November 10, 2015
    Assignee: Cargill, Incorporated
    Inventors: Holly J. Jessen, Jian Yi, Joshua Lundorff, Hans Liao, Ana Negrete-Raymond, Pirkko Suominen, Aristos Aristidou
  • Publication number: 20150315616
    Abstract: Yeast cells are genetically modified to disrupt a native metabolic pathway from dihydroxyacetone to glycerol. In certain aspects, the yeast cell is of the genera Kluyveromyces, Candida or Issatchenkia. In other aspects, the yeast cell is capable of producing at least one organic acid, such as lactate. The yeast cells produce significantly less glycerol than the wild-type strains, and usually produce greater yields of desired fermentation products. Yeast cells of the invention often grow well when cultivated, despite their curtailed glycerol production.
    Type: Application
    Filed: May 25, 2015
    Publication date: November 5, 2015
    Inventors: Catherine Asleson Dundon, Pirrko Suominen, Aristos Aristidou, Brian J. Rush, Kari Koivuranta, Benjamin Matthew Hause, Thomas William McMullin, Kevin Roberg-Perez
  • Publication number: 20150307904
    Abstract: Methods for producing a biofuel are provided. Also provided are biocatalysts that convert a feedstock to a biofuel.
    Type: Application
    Filed: November 21, 2014
    Publication date: October 29, 2015
    Inventors: Andrew C. Hawkins, David A. Glassner, Thomas Buelter, James L. Wade, Peter Meinhold, Matthew W. Peters, Patrick R. Gruber, William A. Evanko, Aristos A. Aristidou, Marco Landwehr
  • Publication number: 20150218596
    Abstract: The present invention provides recombinant microorganisms comprising an isobutanol producing metabolic pathway and methods of using said recombinant microorganisms to produce isobutanol. In various aspects of the invention, the recombinant microorganisms may comprise a modification resulting in the reduction of pyruvate decarboxylase and/or glycerol-3-phosphate dehydrogenase activity. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: September 10, 2014
    Publication date: August 6, 2015
    Inventors: Reid M. Renny Feldman, Uvini Gunawardena, Jun Urano, Peter Meinhold, Aristos Aristidou, Catherine Asleson Dundon, Christopher Smith
  • Publication number: 20150152443
    Abstract: The present invention is directed to recombinant microorganisms comprising one or more dihydroxyacid dehydratase (DHAD)-requiring biosynthetic pathways and methods of using said recombinant microorganisms to produce beneficial metabolites derived from said DHAD-requiring biosynthetic pathways. In various aspects of the invention, the recombinant microorganisms may be engineered to overexpress one or more polynucleotides encoding one or more Aft proteins or homologs thereof. In some embodiments, the recombinant microorganisms may comprise a cytosolically localized DHAD enzyme. In additional embodiments, the recombinant microorganisms may comprise a mitochondrially localized DHAD enzyme.
    Type: Application
    Filed: July 1, 2014
    Publication date: June 4, 2015
    Inventors: Catherine Asleson Dundon, Aristos Aristidou, Andrew Hawkins, Doug Lies, Lynne H. Albert