Patents by Inventor Armand P. Neukermans

Armand P. Neukermans has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030076576
    Abstract: A micro-mirror strip assembly having a plurality of two-dimensional micro-mirror structures with improved deflection and other characteristics is presented. In the micro-mirror structures, electrodes for electrostatic deflection are disposed on conical or quasi-conical entities that are machined, attached or molded into a substrate. The electrodes are quartered approximately parallel to or offset by 45 degrees from rotational axes to form quadrants. Torsion sensors are provided along the axes of rotation to control deflection of the quadrant deflection electrodes.
    Type: Application
    Filed: May 28, 2002
    Publication date: April 24, 2003
    Applicant: Xros, Inc.
    Inventors: Armand P. Neukermans, Timothy G. Slater, Marc R. Schuman, Jack D. Foster, Sam Calmes, Sateesh S. Bajikar, Arun Malhotra, Jane Ang, Jerry Hurst, John Green
  • Publication number: 20030055311
    Abstract: An improved fully implantable hearing aid (10) in a first aspect includes at least two microphones (28) to provide improved noise cancellation, and, with an array (132) of microphones (28), improved directivity. In a second aspect, the hearing aid (10) includes an improved microactuator (32′) in which deflections of a pair of piezoelectric plates (68) are coupled by liquid (52′) to a flexible diaphragm (44′) for stimulating fluid (20a) within an inner ear (17) of a subject (12). In a third aspect, the improved hearing aid (10) includes a directional booster (200) that the subject (12), having an implanted hearing aid (10), may wear on their head (122) for increasing directivity of perceived sound. A fourth aspect of the present invention is an improved implantable microactuator (32″, 32″′) that generates a mechanical displacement of a diaphragm (82) or a face (96) in response to an applied electrical signal.
    Type: Application
    Filed: October 18, 2002
    Publication date: March 20, 2003
    Inventors: Armand P. Neukermans, S. George Lesinski
  • Patent number: 6467345
    Abstract: A method for operating a monolithic, integrated, micromachined structure that includes a reference member and one or more dynamic members. Each dynamic member is supported from the reference member, either directly or indirectly, by torsion hinges. Supported in this way, each dynamic member exhibits a plurality of vibrational modes. Preferably, the structure is micromachined to establishes specified relationships between various pairs of vibrational modes. The method also includes applying force to each dynamic member that urges the member to rotate out of a rest position to a fixed particular angle.
    Type: Grant
    Filed: March 3, 2000
    Date of Patent: October 22, 2002
    Assignee: XROS, Inc.
    Inventors: Armand P. Neukermans, Timothy G. Slater
  • Patent number: 6445844
    Abstract: A fiber optic switch includes a fiber optic switching module that receives and fixes ends of optical fibers. The module includes numerous reflective light beam deflectors which may be selected as pairs for coupling a beam of light between a pair of optical fibers. The module also produces orientation signals from each deflector which indicate its orientation. A portcard included in the switch supplies drive signals to the module for orienting at least one deflector. The portcard also receives the orientation signals produced by that deflector together with coordinates that specify an orientation for the deflector. The portcard compares the received coordinates with the orientation signals received from the deflector and adjusts the drive signals supplied to the module to reduce any difference between the received coordinates and the orientation signals. The switch also employs optical alignment to precisely orient pairs of deflectors coupling a beam of light between optical fibers.
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: September 3, 2002
    Assignee: XROS, Inc.
    Inventors: Armand P. Neukermans, Timothy G. Slater, Tyler L. Baughman, James P. Downing, John S. Forker, Gregory A. Reznick, Sam Calmes, Steven M. Clark, Jack D. Foster, Marc R. Schuman, Rajiv Ramaswami
  • Publication number: 20020111600
    Abstract: An expandable skin stretching device includes skin engaging opposite ends that contact the skin surface on opposite sides of an area of the skin surface having micropathways therein. When the skin stretching device is expanded the skin between the opposite ends is placed under tension, i.e., stretched. The skin is placed under a tension of about 0.01 to about 10 megapascals, preferably about 0.05 to about 2 megapascals. The skin stretching can be uni-directional or multi-directional. Alternative embodiments of skin stretching devices use suction or normal force to stretch the skin. Stretching the skin helps keep the micropathways open for enhanced agent (e.g., drug) delivery through the micropathways. The stretching also delays micropathway closure.
    Type: Application
    Filed: December 8, 2000
    Publication date: August 15, 2002
    Inventors: Michel J.N. Cormier, Joseph C. Trautman, Hyunok L. Kim, Ahmad P. Samiee, Armand P. Neukermans, Bruce P. Edwards, Wai-Loong Lim, Andrew I. Poutiatine
  • Patent number: 6426013
    Abstract: A method for fabricating an integrated, micromachined structure, such as a torsional scanner, that includes a reference member, such as a frame, a pair of torsion hinges, and a dynamic member that is coupled to the reference member by the torsion hinges. The method includes providing a wafer that has been formed from silicon material, and that has both a frontside and a backside. A membrane is formed in the wafer by etching a cavity in the silicon material from the backside of the wafer. The method also includes establishing a pattern that defines the mirror surface and the torsion hinges on the frontside of the wafer at the membrane formed therein. The frontside of the wafer is processed to form therein the dynamic member and the torsion hinges that support the dynamic member for rotation about the axis.
    Type: Grant
    Filed: October 28, 1999
    Date of Patent: July 30, 2002
    Assignee: XROS, Inc.
    Inventors: Armand P. Neukermans, Timothy G. Slater
  • Publication number: 20020062875
    Abstract: Methods for filling transducers of a fully implantable hearing aid system with liquids having either a high or a low vapor pressure are described. Methods are also described for avoiding damage to transducers during their testing and shipment.
    Type: Application
    Filed: January 25, 2002
    Publication date: May 30, 2002
    Inventor: Armand P. Neukermans
  • Patent number: 6392220
    Abstract: A monolithically fabricated micromachined structure (52) couples a reference frame (56) to a dynamic plate (58) or second frame for rotation of the plate (58) or second frame with respect to the reference frame (56). Performance of torsional oscillators or scanners (52) benefits greatly by coupling the frame (56) to the plate (58) or second frame with torsional flexure hinges (56) rather than torsion bars (54). Appendages (122), tethers (142) or an improved drive circuit enhance electrostatic drive stability of torsional oscillators (52). Wide and thin torsional flexure hinges (96) and isotopically pure silicon enhance thermal conductivity between the plate (58) and the frame (56). Dampening material bridging slots (232) adjacent to torsional flexure hinges (96) drastically reduce the dynamic member's Q. A widened section (252) of narrow torsional flexure hinges (96) permit inclusion of a torsion sensor (108). A dynamic member (58) that includes an actuator portion (302) performs light beam switching.
    Type: Grant
    Filed: September 2, 1999
    Date of Patent: May 21, 2002
    Assignee: XROS, Inc.
    Inventors: Timothy G. Slater, Armand P. Neukermans
  • Publication number: 20020032415
    Abstract: A device and method for enhancing skin piercing by microprotrusions involves pre-stretching the skin to enhance pathway formation when the microprotrusions are pressed into the skin. An expandable device includes skin engaging opposite ends that contact the skin surface so that when the device is expanded the skin is stretched. The skin is placed under a tension of about 0.01 to about 10 megapascals, preferably about 0.05 to 2 megapascals. The device has a plurality of microprotrusions which penetrate the skin while the skin is being stretched by the expanded device. Another stretching device employs suction for skin stretching.
    Type: Application
    Filed: December 8, 2000
    Publication date: March 14, 2002
    Inventors: Joseph C. Trautman, Michel J.N. Cormier, Kellee Eng, Wei-Qi Lin, Hyunok K. Kim, Sara L. Sendelbeck, Armand P. Neukermans, Bruce P. Edwards, Wai-Loong Lim, Andrew I. Poutiatine, J. Richard Gyory
  • Publication number: 20020016562
    Abstract: A percutaneous agent delivery or sampling device comprising a sheet having a plurality of microblades for piercing and anchoring to the skin for increasing transdermal flux of an agent and for improving the attachment of the device to the skin.
    Type: Application
    Filed: June 17, 1997
    Publication date: February 7, 2002
    Inventors: MICHEL J. N. CORMIER, ARMAND P. NEUKERMANS, BARRY BLOCK, FELIX T. THEEUWES, ALFRED A. AMKRAUT
  • Publication number: 20020011558
    Abstract: A scanner, through which a document moves while being scanned by a moving beam of light, includes a wheel that rotates responsive to document movement. The wheel includes a multi-sectioned optical encoder upon which the scanning beam of light impinges when in a position at which it does not impinge upon the document. The scanner also includes an optical detector which receives light that is not absorbed by the optical encoder sections. Thus, the optical detector generates an electrical signal that indicates document movement speed. A preferred embodiment the scanner includes a pair of cup-shaped wheels one of which carries the optical encoder that encircles an inner surface of the wheel adjacent to a lip thereof. An axle, also included in the preferred embodiment, spans between, is coupled to, and supports the wheels for rotation in unison about a longitudinal axis parallel to the axle.
    Type: Application
    Filed: May 5, 2001
    Publication date: January 31, 2002
    Inventors: Armand P. Neukermans, James P. Downing, Timothy G. Slater
  • Publication number: 20010049959
    Abstract: A topographic head for profilometry and AFM supports a central paddle by coaxial torsion bars projecting inward from an outer frame. A tip projects from the paddle distal from the bars. The torsion bars include an integrated a paddle rotation sensor.
    Type: Application
    Filed: July 16, 2001
    Publication date: December 13, 2001
    Inventors: Armand P. Neukermans, Timothy G. Slater
  • Patent number: 6272907
    Abstract: A topographic head for profilometry and AFM supports a central paddle by coaxial torsion bars projecting inward from an outer frame. A tip projects from the paddle distal from the bars. The topographic head's frame, bars and paddle are monolithically fabricated by micromachining from a semiconductor wafer. The torsion bars preferably include an integrated paddle rotation sensor. The topographic head may be carried on an XYZ stage for X, Y and Z axis translation. In a preferred embodiment, the XYZ stage is also monolithically fabricated by micromachining from a semiconductor wafer with a fixed outer base that is coupled to an X-axis stage via a plurality of flexures, and with the X-axis stage supporting a Y-axis stage also via a plurality of flexures.
    Type: Grant
    Filed: January 19, 1999
    Date of Patent: August 14, 2001
    Assignee: XROS, Inc.
    Inventors: Armand P. Neukermans, Timothy G. Slater
  • Patent number: 6230051
    Abstract: A percutaneous agent delivery or sampling device comprising a sheet having a plurality of microblades for piercing the skin for increasing transdermal flux of an agent. The microblades having a relatively sharp angled leading edge which transitions to a relatively gradually angled blade edge.
    Type: Grant
    Filed: June 17, 1997
    Date of Patent: May 8, 2001
    Assignee: Alza Corporation
    Inventors: Michel J. N. Cormier, Avtar S. Nat, Armand P. Neukermans, Barry Block
  • Patent number: 6229139
    Abstract: A document transport for a scanner (100) has a flexible, elongated finger (226) disposed adjacent to a document (134), and a force applied to the finger (226) urges teeth (233) on the finger (226) into contact with the document (134) which urges the document (134) along a path through the scanner (100). A piezoelectric plate (222), which applies the force to the finger (226), requires only a small amount of electrical power. To traverse the scanner (100), a document (134) may also be manually fed along a guide (272). First and second speed-sensing detectors (276a and 276b), disposed along the path traversed by the document (134), permit the scanner (100) to determine a speed at which the manually fed document (134) traverses the scanner (100). To conserve electrical energy, the scanner (100) also includes a document-presence detector (274) for activating the scanner (100) when a document (134) to be scanned is present.
    Type: Grant
    Filed: April 11, 2000
    Date of Patent: May 8, 2001
    Assignee: Xros, Inc.
    Inventors: Armand P. Neukermans, James P. Downing, Timothy G. Slater
  • Patent number: 6224445
    Abstract: An actinic radiation source (20) includes an anode (36) upon which an electron beam from a cathode ray gun (24) impinges. The anode (36) includes a window area (52) formed by a silicon membrane. The electron beam upon striking the anode (36) permeates the window area (52) to penetrate into medium surrounding actinic radiation source (20). A method for making an anode (36) uses a substrate having both a thin first layer (44) and a thicker second layer (46) of single crystal silicon material between which is interposed a layer of etch stop material (48). The second layer (46) is anisotropically etched to the etch stop material (48) to define the electron beam window area (52) on the first layer (44). That portion of the etch stop layer (48) exposed by etching through, the second layer (46) is then removed. The anode (36) thus fabricated has a thin, monolithic, low-stress and defect-free silicon membrane electron beam window area (52) provided by the first layer of the substrate.
    Type: Grant
    Filed: July 12, 2000
    Date of Patent: May 1, 2001
    Assignee: AIT
    Inventors: Armand P. Neukermans, Timothy G. Slater
  • Patent number: 6153966
    Abstract: A biocompatible, implantable microactuator (82) for a fully implantable hearing aid system includes a hollow body (84) that has an open first end (88) and, open first and second faces (94a and 94b). Flexible diaphragms (92, 96a and 96b), respectively covering the end (88) and faces (94a and 94b), hermetically seal the body (84). An incompressible liquid (98) fills the body (84). Transducers (102), provided by laminated, stress-biased unimorphs (32 or 62) that are mechanically coupled to the flexible diaphragms (96a and 96b), deflect the diaphragms (96a and 96b) in response to an electrical driving signal. Deflections of the diaphragms (96a and 96b) are coupled by the liquid (98) to the first flexible diaphragm (92). The unimorphs (32 or 62) include a layer of biocompatible metal (36 or 66-68) deposited on one side of a biocompatible piezoelectric ceramic plate (34 or 64) to stress-bias the plate (34 or 64). A thin, biocompatible electrode (44 or 72) coats the other side of the plate (34 or 64).
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: November 28, 2000
    Inventor: Armand P. Neukermans
  • Patent number: 6140755
    Abstract: An actinic radiation source (20) includes an anode (36) upon which an electron beam from a cathode ray gun (24) impinges. The anode (36) includes a window area (52) formed by a silicon membrane. The electron beam upon striking the anode (36) permeates the window area (52) to penetrate into medium surrounding actinic radiation source (20). A method for making an anode (36) uses a substrate having both a thin first layer (44) and a thicker second layer (46) of single crystal silicon material between which is interposed a layer of etch stop material (48). The second layer (46) is anisotropically etched to the etch stop material (48) to define the electron beam window area (52) on the first layer (44). That portion of the etch stop layer (48) exposed by etching through the second layer (46) is then removed. The anode (36) thus fabricated has a thin, monolithic, low-stress and defect-free silicon membrane electron beam window area (52) provided by the first layer of the substrate.
    Type: Grant
    Filed: June 11, 1997
    Date of Patent: October 31, 2000
    Assignee: American International Technologies, Inc.
    Inventors: Armand P. Neukermans, Timothy G. Slater
  • Patent number: 6122394
    Abstract: A beam (38) of electromagnetic radiation deflected by a moving mirror plate (56) of a micromachined scanner (54) produces a two dimensional ("2D") raster (132) on a scanned surface (28) of a block (34). The block (34) is transparent to electro-magnetic radiation of pre-established wavelengths. A radiation inlet-face (36) of the block (34) admits the beam (38) that then impinges on the scanned surface (28) to exit the block (34) through a radiation outlet-face (42). After exiting the block (34), the beam (38) impinges upon a radiation detector (142). Total internal reflection ("TIR") of the beam (38) from the scanned surface (28) at fingerprint valleys and frustration of TIR at fingerprint ridges causes the radiation detector (142) to produce a time-varying electrical signal that represents the fingerprint. The scanned surface (28) may be formed by a patch (302) of resilient material, that may be tinted to be transparent only at the pre-established wavelength of the electro-magnetic radiation.
    Type: Grant
    Filed: May 1, 1997
    Date of Patent: September 19, 2000
    Assignee: Xros, Inc.
    Inventors: Armand P. Neukermans, Timothy G. Slater, Philip Downing
  • Patent number: 6068751
    Abstract: A microfluidic delivery system (20) and microfluidic system (100) control flows of a liquid or a gas through elongated capillaries (62, 126) that are enclosed along at least one surface by a layer (42, 114) of a malleable material. An electrically-powered actuator included in the systems (20, 100) extends toward or retracts a blade from the layer (42, 114) of a malleable material to either occlude or open capillaries. Reservoirs (46, 124) included in a pouch (22, 108) together with the capillaries (62, 126) supply fluids whose flow is controlled by movement of the blades. The microfluidic system (100) permits dispensing at will, under microprocessor control at predetermined flow rates, liquids, samples, chemicals, reagents and body fluids, and mixing them together and/or reacting for diagnostic medical or analytical tests, DNA sequencing etc.
    Type: Grant
    Filed: December 17, 1996
    Date of Patent: May 30, 2000
    Inventor: Armand P. Neukermans