Patents by Inventor Armand P. Neukermans

Armand P. Neukermans has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6064779
    Abstract: A document transport for a scanner (100) has a flexible, elongated finger (226) disposed adjacent to a document (134), and a force applied to the finger (226) urges teeth (233) on the finger (226) into contact with the document (134) which urges the document (134) along a path through the scanner (100). A piezoelectric plate (222), which applies the force to the finger (226), requires only a small amount of electrical power. To traverse the scanner (100), a document (134) may also be manually fed along a guide (272). First and second speed-sensing detectors (276a and 276b), disposed along the path traversed by the document (134), permit the scanner (100) to determine a speed at which the manually fed document (134) traverses the scanner (100). To conserve electrical energy, the scanner (100) also includes a document-presence detector (274) for activating the scanner (100) when a document (134) to be scanned is present.
    Type: Grant
    Filed: July 23, 1998
    Date of Patent: May 16, 2000
    Assignee: Xros, Inc.
    Inventors: Armand P. Neukermans, James P. Downing, Timothy G. Slater
  • Patent number: 6044705
    Abstract: Two torsion bars project from a reference member to support at least one plate or frame-shaped first dynamic member for rotation about an axis of the torsion bars. In one embodiment, a frame-shaped first dynamic member and a second pair of torsion bars, oriented non-parallel to the first torsion bars, support a second dynamic member for rotation about an axis that is collinear with the second pair of torsion bars. The vibrational frequency of the principal torsional vibrational mode of the dynamic members are respectively lower by at least 20% than the vibrational frequency of any other vibrational mode thereof. Either an electrostatic or electromagnetic drive means imparts rotary motion to the dynamic members about the collinear torsion bar axis(es). The reference member, the torsion bars and the dynamic member(s) are all monolithically fabricated from a stress-free semiconductor layer of a silicon substrate.
    Type: Grant
    Filed: May 12, 1997
    Date of Patent: April 4, 2000
    Assignee: Xros, Inc.
    Inventors: Armand P. Neukermans, Timothy G. Slater, Philip Downing
  • Patent number: 5977689
    Abstract: A biocompatible, implantable microactuator (82) for a fully implantable hearing aid system includes a hollow body (84) that has an open first end (88) and, open first and second faces (94a and 94b). Flexible diaphragms (92, 96a and 96b), respectively covering the end (88) and faces (94a and 94b), hermetically seal the body (84). An incompressible liquid (98) fills the body (84). Transducers (102), provided by laminated, stress-biased unimorphs (32 or 62) that are mechanically coupled to the flexible diaphragms (96a and 96b), deflect the diaphragms (96a and 96b) in response to an electrical driving signal. Deflections of the diaphragms (96a and 96b) are coupled by the liquid (98) to the first flexible diaphragm (92). The unimorphs (32 or 62) include a layer of biocompatible metal (36 or 66-68) deposited on one side of a biocompatible piezoelectric ceramic plate (34 or 64) to stress-bias the plate (34 or 64). A thin, biocompatible electrode (44 or 72) coats the other side of the plate (34 or 64).
    Type: Grant
    Filed: July 18, 1997
    Date of Patent: November 2, 1999
    Inventor: Armand P. Neukermans
  • Patent number: 5969465
    Abstract: An improved micromachined structure used for beam scanners, gyroscopes, etc. includes a reference member from which project a first pair of axially aligned torsion bars. A first dynamic member, coupled to and supported from the reference member by the torsion bars, oscillates in one-dimension about the torsion bar's axis. A second dynamic member may be supported from the first dynamic member by a second pair of axially aligned torsion bars for two-dimensional oscillation. The dynamic members respectively exhibit a plurality of vibrational modes each having a frequency and a Q. The improvement includes means for altering a characteristic of the dynamic member's frequency and Q. Coupling between dynamic members permits altering the second dynamic member's frequency and Q by techniques applied to the first dynamic member. Some techniques disclosed also increase oscillation amplitude or reduce driving voltage, and also increase mechanical ruggedness of the structure.
    Type: Grant
    Filed: April 1, 1998
    Date of Patent: October 19, 1999
    Assignee: XROS, Inc.
    Inventors: Armand P. Neukermans, Timothy G. Slater, Philip Downing
  • Patent number: 5951601
    Abstract: A microactuator (32) of an implantable hearing aid system (10) is secured within a casing (50) implanted into a fenestration (52) that pierces the promontory (18) of the otic capsule bone (31). The casing (50) includes a hollow sleeve (62) that has an outer surface (64) and a first end (66) that is received into the fenestration (52). The sleeve (62) also includes an inner surface (68) adapted to receive a barrel (74) of the microactuator (32). The casing (62) also includes a flange (76) that is integral with the sleeve (62) and projects outward from the outer surface (64) of the sleeve (62) about a second end (78) of the sleeve (62). Various means secure the sleeve (62) within the fenestration (52) such as screwing into the promontory (18) or clamping to the promontory (18). The casing may fasten the microactuator (32) to the casing (50) by a threaded attachment, with screws, with button-and-socket snap fasteners, or with a slotted tongue-and-groove lock.
    Type: Grant
    Filed: March 24, 1997
    Date of Patent: September 14, 1999
    Inventors: S. George Lesinski, Armand P. Neukermans, Christopher P. Neukermans
  • Patent number: 5895866
    Abstract: A micromachined, monolithic silicon flow meter includes a vane 28 from which projects a hinge. The hinge is provided by torsion bars 24. The hinge supports the vane 28 for rotation about the torsion bars 24. A deflection sensor, consisting of a torsion sensor 42, incorporated into at least one of the torsion bars 24, senses deflection of the vane 28 responsive to fluid impinging thereupon. The frame 22, the torsion bars 24, the vane 28 and the torsion sensor 42 are all monolithically fabricated in a semi-conductor single-crystal silicon layer of a substrate.
    Type: Grant
    Filed: January 21, 1997
    Date of Patent: April 20, 1999
    Inventors: Armand P. Neukermans, Timothy G. Slater
  • Patent number: 5881158
    Abstract: A implantable sealed microphone (50) includes a diaphragm (52) having a thin central region (54) surrounded by a thicker rim (56). One side of sheet electret material (72) is bonded to the diaphragm (52) while the other side contacts a roughened plate (82). The rim (56) is bonded to a housing (112) thereby hermetically enclosing the electret (72) and the plate (82). The microphone (50) also includes an electrical connector (94) that couples both the plate (82) and the electret (72) to an input of an amplifier (30) included in an implantable hearing aid system (10). Preferably, the microphone (50) is incorporated into a sealed electronics module (100) together with the amplifier (30) and an energy storage device such as a battery that energizes operation of the implantable hearing aid system (10). In such a configuration, the microphone's diaphragm (52) forms a surface of the electronics module's housing (112).
    Type: Grant
    Filed: May 23, 1997
    Date of Patent: March 9, 1999
    Assignee: United States Surgical Corporation
    Inventors: S. George Lesinski, Armand P. Neukermans
  • Patent number: 5861549
    Abstract: A topographic head for profilometry and AFM supports a central paddle by coaxial torsion bars projecting inward from an outer frame. A tip projects from the paddle distal from the bars. The torsion bars include an integrated paddle rotation sensor. A XY stage may carry the topographic head for X and Y axis translation. The XYZ stage's fixed outer base is coupled to an X-axis stage via a plurality of flexures. The X-axis stage is coupled to a Y-axis stage also via a plurality of flexures. One of each set of flexures includes a shear stress sensor. A Z-axis stage may also be included to provide an integrated XYZ scanning stage. The topographic head's frame, bars and paddle, and the XYZ stage's stage-base, X-axis, Y-axis and Z-axis stages, and flexures are respectively monolithically fabricated by micromachining from a semiconductor wafer.
    Type: Grant
    Filed: December 10, 1996
    Date of Patent: January 19, 1999
    Assignee: XROS, Inc.
    Inventors: Armand P. Neukermans, Timothy G. Slater
  • Patent number: 5841553
    Abstract: A compact medium scanner (100) scans a surface (132) of a medium (134) with a beam of light (106). A medium transport mechanism (202, 206) advances the surface along a medium transport path through a scanning station. A light source (104) produces a collimated beam of light (106) that impinges upon a mirror plate (112) of a micromachined torsional scanner (108). A pair of coaxially aligned torsion bars (304) support the mirror plate (112) within the torsional scanner (108). A mirror-surface drive means (306, 312) rotates the mirror plate (112) about the torsion bars (304). A single reciprocation of the mirror plate (112) by the drive means (306, 312) deflects the beam of light (106) over a fan-shaped region having a virtually fixed vertex (128) on the mirror plate (112). Scanner optics (116, 122) direct the fan-shaped region beam of light (106) onto the surface (132) of the medium (134) then present in the scanning station to thereby scan across the medium (134) with the beam of light (106).
    Type: Grant
    Filed: December 24, 1996
    Date of Patent: November 24, 1998
    Assignee: XROS, Inc.
    Inventor: Armand P. Neukermans
  • Patent number: 5772575
    Abstract: A hearing aid includes an implantable microphone, signal-processing amplifier, battery, and microactuator. An electrical signal from the microphone is amplified and processed by the amplifier before being applied to the microactuator. The microactuator is adapted for implantation in a subject at a location from which it may mechanically create vibrations in the perilymph fluid within a subject's inner ear. A transducer of the microactuator is preferably a thin circular disk, 2 to 8 mils thick, of stress-biased PLZT. Disks of this stress-biased PLZT material can be mounted as drumheads in various different ways, preferably in conjunction with a flexible diaphragm, to small threaded metal tubes, e.g. 1.4 mm in diameter and 2.0 mm long. These tubes may be implanted into a fenestration formed through the promontory adjacent to the oval window of a subject's inner ear.
    Type: Grant
    Filed: September 22, 1995
    Date of Patent: June 30, 1998
    Assignees: S. George Lesinski, Armand P. Neukermans
    Inventors: S. George Lesinski, Armand P. Neukermans
  • Patent number: 5658710
    Abstract: The forming of superhard, durable and inert mechanical microstructures, such as tips for atomic force microscopy and field emission, membranes, hinges, actuators, and sensors requires micromachining of silicon or polysilicon. The microstructures are then reacted with a hydrocarbon or ammonia gas, at a temperature in the range of 700.degree. C. to 1100.degree. C. and in partial vacuum conditions for several minutes. Gases such as methane, ethane, or acetylene will convert the surface layers to SiC, which is useful for its conductive properties, while ammonia gas will convert the surface layers to Si.sub.3 N.sub.4, which is useful for its insulative properties. Thus, the converted material will have improved physical, mechanical, chemical and electrical properties.
    Type: Grant
    Filed: February 24, 1995
    Date of Patent: August 19, 1997
    Assignee: Adagio Associates, Inc.
    Inventor: Armand P. Neukermans
  • Patent number: 5648618
    Abstract: An elongated micromachined silicon hinge includes an integral four-terminal piezo voltage torsion sensor. The micromachined hinge is disposed between masses that are located at opposite ends of the hinge, and that are fabricated integrally with the hinge by micromachining. Concurrent application of a torsional force to the hinge, by rotation of the masses about the hinge's longitudinal axis, and an electric current through the hinge's silicon, generates a voltage that appears across a pair of voltage sensing electrodes.
    Type: Grant
    Filed: January 31, 1996
    Date of Patent: July 15, 1997
    Assignee: Armand P. Neukermans
    Inventors: Armand P. Neukermans, Timothy G. Slater
  • Patent number: 5629790
    Abstract: A frequency-locked torsional scanner of the type having a micromachined mirror formed on a surface of a silicon wafer section supported within a larger wafer section by a pair of opposed torsion bars. The principal vibrational frequency of the mirror is selected to be at least 20% higher than other modes of vibration. To prevent breakage, the torsion bars are hardened by conversion of at least a surface layer to silicon carbide or nitride. A pair of scanners with orthogonal torsion bars may be mounted in a vacuum enclosure for two-dimensional scanning at different rates suitable for television display. In alternate embodiments, a detector and a scanner may be built on a plate on the same supported wafer section or two scanners may be independently supported or one scanner and one detector may be independently supported as two plates. The mirror may be driven electrostatically, magnetically, or by both methods.
    Type: Grant
    Filed: October 18, 1993
    Date of Patent: May 13, 1997
    Inventors: Armand P. Neukermans, Timothy G. Slater
  • Patent number: 5488862
    Abstract: A monolithic single crystal Si rate-gyro consisting of in the preferred embodiment, an outer torsional frame, self resonating with a substantial amplitude, as controlled by a four-terminal piezo torsion sensor, connected to an inner frame by torsional hinges. The inner frame itself is connected to a fixed inner post, by a set of torsion hinges, defining an axis of rotation perpendicular to the first axis. Rotation of the axis of oscillation of the outer body causes the moving mass and the inner frame to tilt and oscillate at the outer frequency due to Coriolis forces, thereby periodically deforming the inner hinges in torsion. These inner hinges are likewise equipped with a four-terminal piezo voltage torsion sensor, giving an indication of the rate of rotation of the sensor. The design allows for good sensitivity, due to the substantial swing of the outer oscillator, its high moment of inertia, excellent Si spring characteristics, and excellent sensitivity of the torsional sensors.
    Type: Grant
    Filed: March 8, 1994
    Date of Patent: February 6, 1996
    Assignees: Armand P. Neukermans, D.B.A. Adagio
    Inventors: Armand P. Neukermans, Timothy G. Slater
  • Patent number: 5411644
    Abstract: A conduit defined by an oxygen ion permeable wall formed of zirconia or other materials and having gas permeable electrodes disposed on an inner and outer surface of the wall. The electrodes are configured to form two oxygen pumps that share an electrode on the inner surface in order to minimize interference with gas flowing through the conduit, yet allow a number of operations to be performed on the gas as it flows. The conduit can be used as a getter for removal of oxygen from even reactive gases. The conduit can also be used as a pump for injecting a known quantity of oxygen to the gas, the oxygen supplied from air outside the conduit. The upstream pump can be used as a getter and the downstream pump for oxygen injection, thereby providing a known concentration of oxygen gas or oxidants, such as water vapor, in the gas exiting the conduit. The conduit can contain a pair of sensor electrodes on the inner and outer surface downstream of the other electrodes.
    Type: Grant
    Filed: November 3, 1993
    Date of Patent: May 2, 1995
    Inventor: Armand P. Neukermans
  • Patent number: 5393647
    Abstract: Forming micro-probe tips for an atomic force microscope, a scanning tunneling microscope, a beam electron emission microscope, or for field emission, by first thinning a tip of a first material, such as silicon. The tips are then reacted with a second material, such as atoms from an organic or ammonia vapor, at a temperature of about 1000.degree. C..+-.200.degree. C. and vacuum conditions for several minutes. Vapors such as methane, propane or acetylene will be converted to SiC or WC while ammonia will be converted to Si.sub.3 N.sub.4. The converted material will have different physical, chemical and electrical properties. For example, a SiC tip will be superhard, approaching diamond in hardness. Electrically conductive tips are suitable for field emission.
    Type: Grant
    Filed: July 16, 1993
    Date of Patent: February 28, 1995
    Assignee: Armand P. Neukermans
    Inventors: Armand P. Neukermans, Timothy G. Slater, Linda E. Whittlesey, Sean S. Cahill
  • Patent number: 5276498
    Abstract: An inspection apparatus for a light diffracting surface employs a planar array of individually addressable light valves for use as a spatial filter in an imaged Fourier plane of a diffraction pattern, with valves having a stripe geometry corresponding to positions of members of the diffraction pattern, blocking light from those members. The remaining valve stripes, i.e. those not blocking light from diffraction order members, are open for transmission of light. Light directed onto the surface, such as a semiconductor wafer, forms elongated curved diffraction orders from repetitive patterns of circuit features. The curved diffraction orders are transformed to linear orders by a Fourier transform lens. The linear diffraction orders from repetitive patterns of circuit features are blocked, while light from non-repetitive features, such as dirt particles or defects is allowed to pass through the light valves to a detector.
    Type: Grant
    Filed: May 12, 1992
    Date of Patent: January 4, 1994
    Assignee: Tencor Instruments
    Inventors: Lee K. Galbraith, John L. Vaught, Ralph C. Wolf, Brian Leslie, Armand P. Neukermans
  • Patent number: 5264912
    Abstract: An apparatus used to inspect patterned wafers and other substrates with periodic features for the presence of particles, defects and other aperiodic features in which a spatial filter placed in the Fourier plane is used in combination with either broadband illumination, angularly diverse illumination or both. In contrast to prior devices that direct light from a single monochromatic source through a pinhole aperture stop, embodiments are describes that illuminate a patterned substrate using (1) a single monochromatic source with a slit-shaped aperture stop for angularly diverse illumination, (2) a single broadband source with a pinhole aperture stop for broadband illumination, (3) a single broadband source with a slit-shaped aperture stop for both broadband and angularly diverse illumination, or (4) multiple sources with an aperture stop for each source for at least angularly diverse illumination.
    Type: Grant
    Filed: February 7, 1992
    Date of Patent: November 23, 1993
    Assignee: Tencor Instruments
    Inventors: John L. Vaught, Michael E. Fein, Armand P. Neukermans
  • Patent number: 5241366
    Abstract: A thin film thickness monitor using successive reflection of a polychromatic light beam off of reference thin film of variable optical thickness and a sample thin film whose thickness is to be determined, in which a monochromatic light source is used beforehand to first determine the actual optical thickness of the reference thin film at each relative position of the beam and reference thin film. In one embodiment, the ratio S/R of detected light intensity S from the sample thin film and detected light intensity R from the reference thin film is found for each relative position and the position at which the ratio is a maximum is determined. In another embodiment, this ratio is corrected by a corresponding ratio S.sub.1 /R.sub.1 derived from a bare wafer substrate. The sample can then be located behind additional optical surfaces, such as a vacuum port without causing substantial errors.
    Type: Grant
    Filed: March 4, 1992
    Date of Patent: August 31, 1993
    Assignee: Tencor Instruments
    Inventors: Christopher F. Bevis, Armand P. Neukermans, Stanley E. Stokowski, Ralph C. Wolf, Matthew B. Lutzker
  • Patent number: 5189481
    Abstract: A surface inspection apparatus having multiple inspection stations to inspect a wafer for a number of characteristics. The wafer is placed on a chuck connected to a rack-and-pinion or equivalent system so that the wafer simultaneously rotates and translates under the fixed position of the inspection stations. A single light source may be used by all stations in turn. One station may be a particle detector with collection optics receiving a small select portion of the light scattered from the wafer surface. A second station may be a roughness detector with a collection system to direct a large portion of scattered light to a detector. A position sensitive detector may be used to determine the slope of the wafer surface at an inspection point when the wafer is not clamped to the chuck, giving a measure of surface deformation. These or other stations are positioned about either of two inspection points at which the beam from the light source may be directed.
    Type: Grant
    Filed: July 26, 1991
    Date of Patent: February 23, 1993
    Assignee: Tencor Instruments
    Inventors: Peter C. Jann, Kenneth P. Gross, Armand P. Neukermans