Patents by Inventor Arthur E. Geissberger

Arthur E. Geissberger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6384433
    Abstract: A voltage variable resistor formed on heterojunction bipolar transistor epitaxial material includes a current channel made on emitter material. Emitter mesas separated by a recess provide the contacts for the voltage variable resistor. Each mesa is topped with emitter metal forming the resistor contacts. The emitter mesas are layered on top of the current channel that is layered atop of a base layer. The voltage variable resistor's control contact is provided by a base contact located on the base layer and separated from the current channel.
    Type: Grant
    Filed: March 23, 2000
    Date of Patent: May 7, 2002
    Assignee: RF Micro Devices, Inc.
    Inventors: Curtis A. Barratt, Arthur E. Geissberger, Larry W. Kapitan, Michael T. Fresina, Ramond Jeffrey Vass
  • Patent number: 4994868
    Abstract: A new GaAs FET structure is provided by a process which provides a GaAs channel between AlGaAs layers and wherein the GaAs channel has a higher active carrier concentration than either adjacent AlGaAs layer.
    Type: Grant
    Filed: December 6, 1988
    Date of Patent: February 19, 1991
    Assignee: ITT Corporation
    Inventors: Arthur E. Geissberger, Robert A. Sadler, Gregory E. Menk, Matthew L. Balzan
  • Patent number: 4965218
    Abstract: A method of providing a self-aligned gate (SAG) transistor or FET is disclosed. The method permits large aligment tolerances during manufacture of the SAG FET. A reduction in gate resistance is accomplished by including a second layer of gate metallization, which is highly conductive, after the n+ implant and activation anneal without any critical realignment to the first layer of gate metal. The provision of the second layer after the anneal precludes degradation of the conductivity of the second gate metal by interdiffusion with the first (refractory) gate metal during the anneal. The large tolerance for misalignment of the gate mask level is obtained by a planarization of the anneal cap until the top surface of the first layer of gate metal is exposed, all without the need for a separate mask and etch step to open contact "windows" through the planarization anneal cap layers.
    Type: Grant
    Filed: August 23, 1988
    Date of Patent: October 23, 1990
    Assignee: ITT Corporation
    Inventors: Arthur E. Geissberger, Robert A. Sadler, Paulette Luper, Matthew L. Balzan
  • Patent number: 4962050
    Abstract: A high speed GaAs FET is provided by forming a sandwiched GaAs channel between AlGaAs layers and employing an Si implant to provide channel doping for the GaAs channel. The poor activation efficiency of Si in AlGaAs relative to its activation efficiency in GaAs provides a channel having a higher active dopant concentration than exists in the adjacent sandwiching layers. This tends to enhance conductivity in the channel relative to the sandwiching layers.
    Type: Grant
    Filed: December 6, 1988
    Date of Patent: October 9, 1990
    Assignee: ITT Corporation
    Inventors: Arthur E. Geissberger, Robert A. Sadler, Gregory E. Menk, Matthew L. Balzan
  • Patent number: 4956308
    Abstract: A self-aligned gate (SAG) transistor or FET is described which transistor overcomes several disadvantages of the prior art for making SAG field-effect transistors. The disadvantages noted above result from the fact that current SAG FET's have a symmetrical structure, with n+ regions on either side of the gate electrode. This invention provides a means of masking off a region on the drain side of the gate electrode before performing an n+ implant, so that the n+ implanted region is asymmetrical on the two sides of the gate electrode. This has the desired beneficial effect of reducing the parasitic source resistance, without the deleterious effects on gate-drain breakdown voltage, gate-drain capacitance, and output resistance that invariably accompany a high doping level on the drain side of the gate. Using this technique, substantially increased performance can be obtained from a self-aligned FET.
    Type: Grant
    Filed: January 20, 1987
    Date of Patent: September 11, 1990
    Assignee: ITT Corporation
    Inventors: Edward L. Griffin, Robert A. Sadler, Arthur E. Geissberger
  • Patent number: 4948752
    Abstract: A composite buffer layer is formed with a layer of GaAs on a semi-insulating GaAs substrate. Next a short period superlattice is formed followed by another GaAs layer, whereon is formed a first AlGaAs layer having a first mole fraction of Al and a second AlGaAs layer having a second mole fraction of Al higher than the first mole fraction. As intrinsic GaAs channel layer is formed on the second AlGaAs layer.
    Type: Grant
    Filed: January 31, 1990
    Date of Patent: August 14, 1990
    Assignee: ITT Corporation
    Inventors: Arthur E. Geissberger, Robert A. Sadler, Gregory E. Menk, Matthew L. Balzan
  • Patent number: 4918493
    Abstract: A composite buffer layer is formed with a layer of GaAs on a semi-insulating GaAs substrate. Next a short period superlattice is formed followed by another GaAs layer. A layer of GaAlAs is then provided such that the Ai content and no doping followed by an intrinsic GaAs layer. The intrinsic GaAs layer is the active layer which serves as a channel.
    Type: Grant
    Filed: August 10, 1988
    Date of Patent: April 17, 1990
    Assignee: ITT Corporation
    Inventors: Arthur E. Geissberger, Robert A. Sadler, Gregory E. Menk, Matthew L. Balzan
  • Patent number: 4849376
    Abstract: A process for manufacturing GaAs FET's having refractory metal gates provides for reducing the size of the gate relative to a mask by an etch sequence which results in precisely controlled and repeatable self-limited undercutting of the mask. A reactive ion etch of the refractory metal in a CF.sub.4 O.sub.2 plasma containing an inert gas provides the self-limiting undercut at a pressure in the range of 175-250 mTorr when the power is less than 0.15 W/cm.sup.2. Preceeding the undercut, an anisotropic RIE in a CF.sub.4 plasma can be employed to clear unmasked areas of the refractory metal and an initial sputter cleaning in argon improves the quality of the initial etch.
    Type: Grant
    Filed: December 23, 1987
    Date of Patent: July 18, 1989
    Assignee: ITT A Division of ITT Corporation Gallium Arsenide Technology Center
    Inventors: Matthew L. Balzan, Arthur E. Geissberger, Robert A. Sadler
  • Patent number: 4847212
    Abstract: The provision of an intermediately doped transition region between respective n+ implanted source and drain regions in a GaAs FET and the lightly doped channel region under the gate permits device optimizaiton for low source and drain resistance in EFET's while employing the same n+ implant for source and drain optimization in DFET's while also maintaining the same n+ to gate contact spacing in both device types. Additionally, in high frequency operation of an asymmetrically implanted FET, the tapered doping profile offered by the transition region on the drain side of the gate provides high transconductance without sacrificing high output resistance. The transition region can be provided in a self-aligned implant employing dielectric sidewall spacers and the n+ implant can be self-aligned with an etch mask employed in gate definition.
    Type: Grant
    Filed: December 23, 1987
    Date of Patent: July 11, 1989
    Assignee: ITT Gallium Arsenide Technology Center
    Inventors: Matthew L. Balzan, Arthur E. Geissberger, Robert A. Sadler
  • Patent number: 4832761
    Abstract: A process for manufacturing gallium arsenide microwave circuits makes use of a nonphotosensitive acid resist as an adhesive for holding the "front side" of a gallium arsenide wafer onto a substrate while operations such as etching "via holes" into the wafer are being performed on the "back side" of the wafer. The process comprises front side processing, spinning the nonphotosensitive acid resist onto the frontside of the GaAs wafer, baking the protective acid resist coating onto the wafer, spinning the acid resist onto a substrate, joining the wafer to the substrate, thinning the wafer, and performing backside processing.
    Type: Grant
    Filed: September 8, 1987
    Date of Patent: May 23, 1989
    Assignee: ITT Gallium Arsenide Technology Center, A Division of ITT Corporation
    Inventors: Arthur E. Geissberger, Philippe R. Claytor
  • Patent number: 4782032
    Abstract: A method of making a field-effect transistor includes performing a first ion implant in at least one region of a gallium arsenide substrate and forming a metallization layer of titanium-tungsten nitride on the implanted substrate. A metallic gold masking layer is deposited on the metallization layer over the implanted region and that portion of the metallization layer which is unmasked is removed. A self-aligned source of implantation ions is beamed into the first implanted region in those areas not covered by the masking layer. The substrate is then annealed to activate the implanted region with the gold masking layer remaining to greatly reduce the resistance of the gate electrode of said field-effect transistor.
    Type: Grant
    Filed: January 12, 1987
    Date of Patent: November 1, 1988
    Assignee: ITT Gallium Arsenide Technology Center, a division of ITT Corporation
    Inventors: Arthur E. Geissberger, Robert A. Sadler, Matthew L. Balzan