Patents by Inventor Arthur G. Merryman

Arthur G. Merryman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9804498
    Abstract: A photoresist stripping tool includes a reservoir configured to contain photoresist stripping solution and a Pb filter comprising a filter element with Tin (Sn) exterior surfaces. A semiconductor wafer fabrication system includes a semiconductor wafer attached to the photoresist stripping tool that strips photoresist from the semiconductor wafer. A photoresist stripping processes includes stripping photoresist from a leaded semiconductor wafer with photoresist stripping solution within the photoresist stripping tool, filtering Lead Pb from the photoresist stripping solution with the Pb filter, and stripping photoresist from a lead-free semiconductor wafer with the filtered photoresist stripping solution.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: October 31, 2017
    Assignee: International Business Machines Corporation
    Inventors: Charles L. Arvin, Harry D. Cox, Arthur G. Merryman, Jennifer D. Schuler
  • Publication number: 20150352476
    Abstract: A photoresist stripping tool includes a reservoir configured to contain photoresist stripping solution and a Pb filter comprising a filter element with Tin (Sn) exterior surfaces. A semiconductor wafer fabrication system includes a semiconductor wafer attached to the photoresist stripping tool that strips photoresist from the semiconductor wafer. A photoresist stripping processes includes stripping photoresist from a leaded semiconductor wafer with photoresist stripping solution within the photoresist stripping tool, filtering Lead Pb from the photoresist stripping solution with the Pb filter, and stripping photoresist from a lead-free semiconductor wafer with the filtered photoresist stripping solution.
    Type: Application
    Filed: June 9, 2014
    Publication date: December 10, 2015
    Inventors: Charles L. Arvin, Harry D. Cox, Arthur G. Merryman, Jennifer D. Schuler
  • Patent number: 7683493
    Abstract: One embodiment of the present invention is directed to an under bump metallurgy material. The under bump metallurgy material of this embodiment includes an adhesion layer and a conduction layer formed on top of the adhesion layer. The under bump metallurgy material of this embodiment also includes a barrier layer plated on top of the conduction layer and a sacrificial layer plated on top of the barrier layer. The conduction layer of this embodiment includes a trench formed therein, the trench contacting a portion of the barrier layer and blocking a path of intermetallic formation between the conduction layer and the sacrificial layer.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: March 23, 2010
    Assignee: International Business Machines Corporation
    Inventors: Charles L. Arvin, Carla A. Bailey, Harry D. Cox, Hua Gan, Hsichang Liu, Arthur G. Merryman, Vall F. McClean, Srinivasa S. N. Reddy, Brian R. Sundlof
  • Publication number: 20090267228
    Abstract: One embodiment of the present invention is directed to an under bump metallurgy material. The under bump metallurgy material of this embodiment includes an adhesion layer and a conduction layer formed on top of the adhesion layer. The under bump metallurgy material of this embodiment also includes a barrier layer plated on top of the conduction layer and a sacrificial layer plated on top of the barrier layer. The conduction layer of this embodiment includes a trench formed therein, the trench contacting a portion of the barrier layer and blocking a path of intermetallic formation between the conduction layer and the sacrificial layer.
    Type: Application
    Filed: April 29, 2008
    Publication date: October 29, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles L. Arvin, Carla A. Bailey, Harry D. Cox, Hua Gan, Hsichang Liu, Arthur G. Merryman, Vall F. McClean, Srinivasa S. N. Reddy, Brian R. Sundlof
  • Patent number: 7294909
    Abstract: A multilayer ceramic repair process which provides a new electrical repair path to connect top surface vias. The repair path is established between a defective net and a redundant repair net contained within the multilayer ceramic substrate. The defective net and the repair net each terminate at surface vias of the substrate. A laser is used to form post fired circuitry on and in the substrate. This is followed by the electrical isolation of the defective net from the electrical repair structure and passivation of the electrical repair line.
    Type: Grant
    Filed: April 5, 2005
    Date of Patent: November 13, 2007
    Assignee: International Business Machines Corporation
    Inventors: Jon A. Casey, James G. Balz, Michael Berger, Jerome Cohen, Charles Hendricks, Richard Indyk, Mark LaPlante, David C. Long, Lori A. Maiorino, Arthur G. Merryman, Glenn A. Pomerantz, Robert A. Rita, Krystyna W. Semkow, Patrick E. Spencer, Brian R. Sundlof, Richard P. Surprenant, Donald R. Wall, Thomas A. Wassick, Kathleen M. Wiley
  • Patent number: 6916670
    Abstract: A multilayer ceramic repair process which provides a new electrical repair path to connect top surface vias. The repair path is established between a defective net and a redundant repair net contained within the multilayer ceramic substrate. The defective net and the repair net each terminate at surface vias of the substrate. A laser is used to form post fired circuitry on and in the substrate. This is followed by the electrical isolation of the defective net from the electrical repair structure and passivation of the electrical repair line.
    Type: Grant
    Filed: February 4, 2003
    Date of Patent: July 12, 2005
    Assignee: International Business Machines Corporation
    Inventors: Jon A. Casey, James G. Balz, Michael Berger, Jerome Cohen, Charles Hendricks, Richard Indyk, Mark LaPlante, David C. Long, Lori A. Maiorino, Arthur G. Merryman, Glenn A. Pomerantz, Robert A. Rita, Krystyna W. Semkow, Patrick E. Spencer, Brian R. Sundlof, Richard P. Surprenant, Donald R. Wall, Thomas A. Wassick, Kathleen M. Wiley
  • Publication number: 20040148765
    Abstract: A multilayer ceramic repair process which provides a new electrical repair path to connect top surface vias. The repair path is established between a defective net and a redundant repair net contained within the multilayer ceramic substrate. The defective net and the repair net each terminate at surface vias of the substrate. A laser is used to form post fired circuitry on and in the substrate. This is followed by the electrical isolation of the defective net from the electrical repair structure and passivation of the electrical repair line.
    Type: Application
    Filed: February 4, 2003
    Publication date: August 5, 2004
    Applicant: International Business Machines Corporation
    Inventors: Jon A. Casey, James G. Balz, Michael Berger, Jerome Cohen, Charles Hendricks, Richard Indyk, Mark LaPlante, David C. Long, Lori A. Maiorino, Arthur G. Merryman, Glenn A. Pomerantz, Robert A. Rita, Krystyna W. Semkow, Patrick E. Spencer, Brian R. Sundlof, Richard P. Surprenant, Donald R. Wall, Thomas A. Wassick, Kathleen M. Wiley
  • Patent number: 6541709
    Abstract: A multilayer thin film structure having defined strap repair lines thereon and a method for repairing interconnections in the multilayer thin film structure (MLTF) and/or making engineering changes (EC) are provided. The method determines interconnection defects in the MLTF at a thin film layer adjacent the top metal layer of the structure, defines the top surface metallization including a series of orthogonal X conductor lines and Y conductor lines using photoresist and lithography and additive or subtractive metallization techniques and then uses a phototool to selectively expose the photoresist to define top surface strap connections needed to repair the interconnections and/or make EC's, and forms the top surface metallization.
    Type: Grant
    Filed: November 1, 1996
    Date of Patent: April 1, 2003
    Assignee: International Business Machines Corporation
    Inventors: Peter A. Franklin, Arthur G. Merryman, Rajesh S. Patel, Thomas A. Wassick
  • Patent number: 6455331
    Abstract: A device repair process that includes removing a passivation polyimide layer. The passivation polyimide layer is removed using a first-half ash followed by a second-half ash. The device is rotated during the second-half ash. The device is then cleaned using sodium hydroxide (NaOH) and a subsequent light ash step is implemented. After the passivation polyimide layer is removed, a seed layer is deposited on the device. A photoresist is formed on the seed layer and bond sites are formed in the photoresist. Repair metallurgy is plated through the bond sites. The bond sites are plated by coupling the device to a fixture and applying the current for plating to the fixture. The contact between the device and the fixture is made though bottom surface metallurgy. After plating, the residual seed layer is removed and a laser delete process is implemented to disconnect and isolate the nets of the device.
    Type: Grant
    Filed: May 29, 2001
    Date of Patent: September 24, 2002
    Assignee: International Business Machines Corporation
    Inventors: Roy Yu, Kamalesh S. Desai, Peter A. Franklin, Suryanarayana Kaja, Kimberley A. Kelly, Yeeling L. Lee, Arthur G. Merryman, Frank R. Morelli, Thomas A. Wassick
  • Patent number: 6427324
    Abstract: A multilayer thin film structure having defined strap repair lines thereon and a method for repairing interconnections in the multilayer thin film structure (MLTF) and/or making engineering changes (EC) are provided. The method comprises determining interconnection defects in the MLTF at a thin film layer adjacent the top metal layer of the structure, defining the top surface metallization including a series of orthogonal X conductor lines and Y conductor lines using photoresist and lithography and additive or phototool to selectively expose the photoresist to define top surface strap connections needed to repair the interconnections and/or make EC's, and forming the top surface metallization.
    Type: Grant
    Filed: July 13, 1998
    Date of Patent: August 6, 2002
    Assignee: International Business Machines Corporation
    Inventors: Peter A. Franklin, Arthur G. Merryman, Rajesh S. Patel, Thomas A. Wassick
  • Publication number: 20010023081
    Abstract: A device repair process that includes removing a passivation polyimide layer. The passivation polyimide layer is removed using a first-half ash followed by a second-half ash. The device is rotated during the second-half ash. The device is then cleaned using sodium hydroxide (NaOH) and a subsequent light ash step is implemented. After the passivation polyimide layer is removed, a seed layer is deposited on the device. A photoresist is formed on the seed layer and bond sites are formed in the photoresist. Repair metallurgy is plated through the bond sites. The bond sites are plated by coupling the device to a fixture and applying the current for plating to the fixture. The contact between the device and the fixture is made though bottom surface metallurgy. After plating, the residual seed layer is removed and a laser delete process is implemented to disconnect and isolate the nets of the device.
    Type: Application
    Filed: May 29, 2001
    Publication date: September 20, 2001
    Inventors: Roy Yu, Kamalesh S. Desal, Peter A. Franklin, Suryanatayana Kala, Kimberley A. Kelly, Yeeling L. Lee, Arthur G. Merryman, Frank R. Morelll, Thomas A. Wassick
  • Patent number: 6248599
    Abstract: A device repair process that includes removing a passivation polyimide layer. The passivation polyimide layer is removed using a first-half ash followed by a second-half ash. The device is then cleaned using sodium hydroxide (NaOH) and a subsequent light ash step is implemented. After the passivation polyimide layer is removed, a seed layer is deposited on the device. A photoresist is formed on the seed layer and bond sites are formed in the photoresist. Repair metallurgy is plated through the bond sites. The bond sites are plated by coupling the device to a fixture and applying the current for plating to the fixture. The contact between the device and the fixture is made though bottom surface metallurgy. After plating, the residual seed layer is removed and a laser delete process is implemented to disconnect and isolate the nets of the device.
    Type: Grant
    Filed: December 2, 1999
    Date of Patent: June 19, 2001
    Assignee: International Business Machines Corporation
    Inventors: Roy Yu, Kamalesh S. Desai, Peter A. Franklin, Suryanarayana Kaja, Kimberley A. Kelly, Yeeling L. Lee, Arthur G. Merryman, Frank R. Morelli, Thomas A. Wassick
  • Patent number: 6054749
    Abstract: A process for partially repairing defective Multi-Chip Module (MCM) Thin-Film (TF) wiring nets. The process comprises the steps of locating a short circuit between any two nets of the MCM, identifying a site to cut in one of the two nets, and deleting an internal portion of one of the two nets at the identified site.
    Type: Grant
    Filed: April 23, 1999
    Date of Patent: April 25, 2000
    Assignee: International Business Machines Corporation
    Inventors: Gerald K. Bartley, Peter A. Franklin, Carmine J. Mele, Arthur G. Merryman, John R. Pennacchia, Kurt A. Smith, Thomas A. Wassick, Thomas A. Wayson, Roy Yu
  • Patent number: 6048741
    Abstract: A device repair process that includes removing a passivation polyimide layer. The passivation polyimide layer is removed using a first-half ash followed by a second-half ash. The device is rotated during the second-half ash. The device is then cleaned using sodium hydroxide (NaOH) and a subsequent light ash step is implemented. After the passivation polyimide layer is removed, a seed layer is deposited on the device. A photoresist is formed on the seed layer and bond sites are formed in the photoresist. Repair metallurgy is plated through the bond sites. The bond sites are plated by coupling the device to a fixture and applying the current for plating to the fixture. The contact between the device and the fixture is made though bottom surface metallurgy. After plating, the residual seed layer is removed and a laser delete process is implemented to disconnect and isolate the nets of the device.
    Type: Grant
    Filed: October 31, 1997
    Date of Patent: April 11, 2000
    Assignee: International Business Machines Corporation
    Inventors: Roy Yu, Kamalesh S. Desai, Peter A. Franklin, Suryanarayana Kaja, Kimberley A. Kelly, Yeeling L. Lee, Arthur G. Merryman, Frank R. Morelli, Thomas A. Wassick
  • Patent number: 5972723
    Abstract: A process for partially repairing defective Multi-Chip Module (MCM) Thin-Film (TF) wiring nets. The process comprises the steps of locating a short circuit between any two nets of the MCM, identifying a site to cut in one of the two nets, and deleting an internal portion of one of the two nets at the identified site.
    Type: Grant
    Filed: October 21, 1997
    Date of Patent: October 26, 1999
    Assignee: International Business Machines Corporation
    Inventors: Gerald K. Bartley, Peter A. Franklin, Carmine J. Mele, Arthur G. Merryman, John R. Pennacchia, Kurt A. Smith, Thomas A. Wassick, Thomas A. Wayson, Roy Yu
  • Patent number: 5937269
    Abstract: A Process for graphically assisting the partial repair of defective MCM TF wiring nets. The process comprises the steps of inserting the wiring layer of the thin-film device in a tester, scanning the wiring layer of the thin-film device with the tester, identifying defects in the wiring nets, prioritizing the defects based on a function of each of the defective wiring nets, and repairing the defects based on priority.
    Type: Grant
    Filed: October 29, 1997
    Date of Patent: August 10, 1999
    Assignee: International Business Machines Corporation
    Inventors: Roy Yu, Gerald K. Bartley, Peter A. Franklin, Carmine J. Mele, Arthur G. Merryman, John R. Pennacchia, Kurt A. Smith, Thomas A. Wassick, Thomas A. Wayson