Patents by Inventor Arthur Griffin

Arthur Griffin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8494665
    Abstract: The present invention comprises a method for processing move information obtained from a board game move-recording device in order to produce an accurate record of the moves of the game. In particular, the present invention is intended for use with board games such as chess in which the game pieces move between fixed locations. Further, the present invention is intended for use with a simpler and less expensive class of board game move-recording devices that are capable of detecting the presence or absence of a game piece on any one of the game board's fixed locations, but which are not further capable of determining the identity of the detected piece. The objective of the present invention is to resolve any ambiguities found in the move information produced by those devices and, thereby, enable those devices to produce complete and accurate game records.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: July 23, 2013
    Inventor: John Arthur Griffin
  • Patent number: 8435441
    Abstract: Disclosed are compositions for applying to honeycomb bodies. The compositions can be used as plugging mixtures for forming a ceramic wall flow filter. Alternatively, the compositions can be used to form skin coatings on exterior portions of a honeycomb body. The disclosed compositions include an inorganic powder batch composition, an organic binder, a liquid vehicle, and a rheology modifier. The compositions exhibit improved rheological properties, including an increased yield strength and reduced viscosity under shear, which, among various embodiments, can enable the manufacture of sintered phase end plugs having reduced levels of dimple and pinhole formations in the final dried and fired end plugs as well as end plugs having relatively uniform and desired depths. Also disclosed are methods for forming end plugged ceramic wall flow filters from the plugging mixtures disclosed herein.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: May 7, 2013
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, James Arthur Griffin, Jr., David Lambie Tennent, Lung-Ming Wu
  • Patent number: 8062881
    Abstract: Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm2 are achieved by: (1) applying a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 to the surface; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to the mold surfaces which contact molten polymer and form the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like. Further, the low binding surfaces may be produced by incorporating non-soluble, non-ionic surfactants having an HLB number of less than or equal to 10 into a polymer blend prior to molding the article.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: November 22, 2011
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Edward John Fewkes, Jr., James Arthur Griffin, Frances M. Smith, David L. Tennent
  • Publication number: 20100280174
    Abstract: Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm2 are achieved by: (1) applying a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 to the surface; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to the mold surfaces which contact molten polymer and fault the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like. Further, the low binding surfaces may be produced by incorporating non-soluble, non-ionic surfactants having an HLB number of less than or equal to 10 into a polymer blend prior to molding the article.
    Type: Application
    Filed: July 8, 2010
    Publication date: November 4, 2010
    Inventors: Dana Craig Bookbinder, Edward John Fewkes, JR., James Arthur Griffin, Frances M. Smith, David L. Tennent
  • Patent number: 7776572
    Abstract: Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm2 are achieved by: (1) applying a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 to the surface; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to the mold surfaces which contact molten polymer and form the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like. Further, the low binding surfaces may be produced by incorporating non-soluble, non-ionic surfactants having an HLB number of less than or equal to 10 into a polymer blend prior to molding the article.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: August 17, 2010
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Edward John Fewkes, Jr., James Arthur Griffin, Frances M. Smith, David L. Tennent
  • Publication number: 20090033005
    Abstract: Disclosed are compositions for applying to honeycomb bodies. The compositions can be used as plugging mixtures for forming a ceramic wall flow filter. Alternatively, the compositions can be used to form skin coatings on exterior portions of a honeycomb body. The disclosed compositions include an inorganic powder batch composition, an organic binder, a liquid vehicle, and a rheology modifier. The compositions exhibit improved rheological properties, including an increased yield strength and reduced viscosity under shear, which, among various embodiments, can enable the manufacture of sintered phase end plugs having reduced levels of dimple and pinhole formations in the final dried and fired end plugs as well as end plugs having relatively uniform and desired depths. Also disclosed are methods for forming end plugged ceramic wall flow filters from the plugging mixtures disclosed herein.
    Type: Application
    Filed: July 25, 2008
    Publication date: February 5, 2009
    Inventors: Dana Craig Bookbinder, James Arthur Griffin, JR., David Lambie Tennent, Lung-Ming Wu
  • Publication number: 20080145280
    Abstract: Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm2 are achieved by: (1) applying a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 to the surface; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions. Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to the mold surfaces which contact molten polymer and form the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like. Further, the low binding surfaces may be produced by incorporating non-soluble, non-ionic surfactants having an HLB number of less than or equal to 10 into a polymer blend prior to molding the article.
    Type: Application
    Filed: October 30, 2007
    Publication date: June 19, 2008
    Inventors: Dana Craig Bookbinder, Edward John Fewkes, James Arthur Griffin, Frances M. Smith, David L. Tennent
  • Patent number: 7312057
    Abstract: Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm2 are achieved by: (1) applying a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 to the surface; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to the mold surfaces which contact molten polymer and form the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like. Further, the low binding surfaces may be produced by incorporating non-soluble, non-ionic surfactants having an HLB number of less than or equal to 10 into a polymer blend prior to molding the article.
    Type: Grant
    Filed: March 3, 2003
    Date of Patent: December 25, 2007
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Edward John Fewkes, Jr., James Arthur Griffin, Frances M. Smith, David L. Tennent
  • Publication number: 20030199065
    Abstract: Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm2 are achieved by: (1) applying a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 to the surface; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to the mold surfaces which contact molten polymer and form the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like. Further, the low binding surfaces may be produced by incorporating non-soluble, non-ionic surfactants having an HLB number of less than or equal to 10 into a polymer blend prior to molding the article.
    Type: Application
    Filed: March 3, 2003
    Publication date: October 23, 2003
    Applicant: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Edward John Fewkes, James Arthur Griffin, Frances M. Smith, David L. Tennent
  • Patent number: 6565789
    Abstract: Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm2 are achieved by: (1) applying a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 to the surface; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions. Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to the mold surfaces which contact molten polymer and form the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like. Further, the low binding surfaces may be produced by incorporating non-soluble, non-ionic surfactants having an HLB number of less than or equal to 10 into a polymer blend prior to molding the article.
    Type: Grant
    Filed: February 18, 2000
    Date of Patent: May 20, 2003
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Edward John Fewkes, Jr., James Arthur Griffin, Frances M. Smith, David L. Tennent
  • Publication number: 20030073067
    Abstract: Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm2 are achieved by: (1) applying a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 to the surface; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to the mold surfaces which contact molten polymer and form the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like. Further, the low binding surfaces may be produced by incorporating non-soluble, non-ionic surfactants having an HLB number of less than or equal to 10 into a polymer blend prior to molding the article.
    Type: Application
    Filed: February 18, 2000
    Publication date: April 17, 2003
    Inventors: Dana Craig Bookfinder, Edward John Fewkes, James Arthur Griffin, Frances M. Smith, David L. Tennent
  • Patent number: 6319664
    Abstract: Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm2 are achieved by: (1) applying to a hydrophobic polymer surface a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 and at least one hydrophilic element which can extend into an aqueous solution; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions. Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to mold surfaces which contact molten polymer and form the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like.
    Type: Grant
    Filed: February 18, 2000
    Date of Patent: November 20, 2001
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Edward John Fewkes, Jr., James Arthur Griffin, Frances M. Smith, David L. Tennent
  • Patent number: 6093559
    Abstract: Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm.sup.2 are achieved by: (1) applying to a hydrophobic polymer surface a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 and at least one hydrophilic element which can extend into an aqueous solution; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions. Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to mold surfaces which contact molten polymer and form the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like.
    Type: Grant
    Filed: August 26, 1997
    Date of Patent: July 25, 2000
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Edward John Fewkes, Jr., James Arthur Griffin, Frances M. Smith, David L. Tennent
  • Patent number: 5767457
    Abstract: A method and apparatus for developing an audible feedback in the form of a response signal to a tapping motion, a gesture or a series of taps or gestures on an electronic touch-sensitive computer input device which uses an electronic switch having no mechanical switch component. In particular, the present invention is beneficial for a touch-sensitive input device a touch-pad or stylus and tablet because it is difficult for the user to know whether a tapping motion is perceived by the device's sensing circuitry. The method is less than perfectly reliable because it is often difficult for the user to know whether sufficient pressure was applied to the touch-sensitive surface of the device, or whether contact was made for a sufficient amount of time. Consequently, the user must wait to see if the computer responds in the desired manner. If not, the user must repeat the motion.
    Type: Grant
    Filed: November 13, 1995
    Date of Patent: June 16, 1998
    Assignee: Cirque Corporation
    Inventors: George E. Gerpheide, Arthur Griffin, Anil Sabbavarapu