Patents by Inventor Arunabha Ghosh

Arunabha Ghosh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200170036
    Abstract: The described technology is generally directed towards wireless communications systems in which multiple control channel resource sets (CORESETs) are configured into a CORESET group. The CORESET group may be associated with a usage scenario/quality of service requirement, and used by user equipment to decode downlink control information corresponding to that usage scenario. For example, one CORESET group can be used for URLLC traffic, another for eMBB type traffic and another for mMTC traffic. Different CORESET groups may be used to provide different aggregation level sets, different DMRS pattern configurations, different search spaces, different transmission protocols/schemes, different beam management and recovery procedures, different radio link monitoring and radio link failure procedures, and so on. Different CORESET groups may be associated with different transmission points.
    Type: Application
    Filed: January 29, 2020
    Publication date: May 28, 2020
    Inventors: Salam Akoum, Ralf Bendlin, Xiaoyi Wang, Arunabha Ghosh
  • Patent number: 10666330
    Abstract: Various embodiments disclosed herein provide for a base station device that can determine which layers should be mapped to codewords in a multi-layer, multi-antenna transmission. The base station device can transmit reference signals to a user equipment device, with each reference signal associated with a respective codeword to layer mapping combination, and the user equipment can send channel state information associated with each reference signal back to the base station device, and the base station device can rank each combination in terms of spectral efficiency or capacity and/or throughput. The base station device can inform the user equipment of the ranked combinations by sending a bit map with the ranked combinations to the user equipment device.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: May 26, 2020
    Assignee: AT&T INTELLECTUAL PROPERTY I, L.P.
    Inventors: SaiRamesh Nammi, Arunabha Ghosh
  • Patent number: 10666340
    Abstract: A split radio access network is provided that efficiently transmits beamforming coefficients from a distributed baseband unit device to a remote radio unit device to facilitate beamforming at the remote radio unit. The beamforming coefficients can be determined at the baseband unit device and transmitted along with the IQ data (data to be beamformed) to the remote radio unit device. Due to the large number of antenna ports however, there can still be a very large number of coefficients to transmit, and the disclosure provides for a compressed set of coefficients that reduces the overhead signaling requirements. Instead of sending coefficients for every kth antenna port, the system can select a subset of the coefficients corresponding to a set of k antenna ports which can be used by the remote radio unit to approximate the full set of beamforming coefficients.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: May 26, 2020
    Assignee: AT&T INTELLECTUAL PROPERTY I, L.P.
    Inventors: SaiRamesh Nammi, Aditya Chopra, Arunabha Ghosh, Milap Majmundar
  • Patent number: 10666374
    Abstract: The gains with non-orthogonal multiple access (NOMA) for uplink data transmissions can be high when chosen codes are orthogonal. However, when codes are non-orthogonal, the gains can be low. NOMA can be used when there is more than one mobile device using the same resources. Since orthogonal codes can not be possible for every length, codes which have low cross-correlation properties can be used. However, when there are a large number of mobile devices using the same resources, the cross-correlation between the codes can cause interference to the mobile devices. Reducing the gains of a NOMA system can reduce the overall throughput. Thus, transmitting data on the same resources in a NOMA can occur in spite of the interference to the UEs transmitting data on the same resources. Therefore, a non-orthogonal multiple access design for a 5G network can mitigate interference.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: May 26, 2020
    Assignee: AT&T INTELLECTUAL PROPERTY I, L.P.
    Inventors: SaiRamesh Nammi, Arunabha Ghosh, Saeed Ghassemzadeh
  • Publication number: 20200162174
    Abstract: An example method may include a processing system of a channel sounding receiver having a processor receiving from a base station, at a location, a channel sounding waveform via a plurality of carriers, sampling the channel sounding waveform via the plurality of carriers to generate a plurality of per-carrier time domain sample sets, and processing the plurality of per-carrier time domain sample sets via a plurality of discrete Fourier transform modules to provide a plurality of per-carrier frequency domain sample sets. The method may further include the processing system aligning the plurality of per-carrier frequency domain sample sets in gain and phase to provide a combined frequency domain sample set and measuring a channel property at the location based upon the combined frequency domain sample set.
    Type: Application
    Filed: January 27, 2020
    Publication date: May 21, 2020
    Inventors: Aditya Chopra, Saeed Ghassemzadeh, Arunabha Ghosh, Ralf Bendlin, Salam Akoum, SaiRamesh Nammi, Thomas Novlan, Xiaoyi Wang
  • Publication number: 20200163077
    Abstract: A bandwidth efficient way to improve reliability without introducing additional latency is provided for Ultra-Reliable and Low Latency Communications (URLLC) service in 5G NR. In particular, using rateless fountain codes in conjunction with packet duplication for split bearers at the Packet Data Convergence Protocol (PDCP) layer increases the reliability of transmission without the need for retransmissions, and with a lower bandwidth requirement compared to traditional packet duplication.
    Type: Application
    Filed: January 22, 2020
    Publication date: May 21, 2020
    Inventors: Milap Majmundar, Arunabha Ghosh
  • Patent number: 10659270
    Abstract: The described technology is generally directed towards having a transmitter in a wireless network generate and map reference signal sequences (e.g., for demodulation or other reference signal usage) so that the reference signal sequences are non-repetitive in a resource block. Avoiding repetition of the reference signal sequences reduces the peak-to-average power ratio in orthogonal frequency-division multiplexing (OFDM) systems. In one aspect, a transmitter device generates different reference signal sequences to avoid repetition of resource signal sequences, and maps the different reference signal sequences to appropriate (different) resource elements of a resource block. In one implementation, the different reference signal sequences can be based on different indexes of antenna ports. In an alternative implementation, the different reference signal sequences can be based on different code division multiplexing groups.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: May 19, 2020
    Assignee: AT&T INTELLECTUAL PROPERTY I, L.P.
    Inventors: SaiRamesh Nammi, Arunabha Ghosh
  • Patent number: 10660101
    Abstract: Various embodiments disclosed herein provide for optimizing identification of a beam in a massive multiple-input multiple output (MIMO) system. The receiver device can select a beam to use for a transmission, and generate channel state information based on a selection of either a single stage beam selection process or a two stage beam selection process. According to an embodiment of the disclosure, the receiver can select which beam selection process to use based on the context of the receiver device. The receiver can select which beam selection process to use based on the long term signal to noise ratio, or the correlation metrics associated with the receiver and transmitter, or based on the path loss between the transmitter and receiver, or based on the location of the receiver relative to the transmitter.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: May 19, 2020
    Assignee: AT&T INTELLECTUAL PROPERTY I, L.P.
    Inventors: SaiRamesh Nammi, Salam Akoum, Arunabha Ghosh
  • Publication number: 20200154335
    Abstract: A more efficient network can be achieved using a network-based controller to configure routing tables to route data traffic to and from transmission points. Dynamic partitioning of network resources between the transmission points and a backhaul can be performed in conjunction with a resource scheduler of a network-based controller. The scheduler can relay scheduling metrics or benefit metrics from the network-based controller to the transmission points. Backhaul route optimization can also be used to select relay transmission points based upon conditions being determined to be satisfied.
    Type: Application
    Filed: January 14, 2020
    Publication date: May 14, 2020
    Inventors: Zhi Cui, Milap V. Majmundar, Arunabha Ghosh, Weihua Ye
  • Publication number: 20200154287
    Abstract: The disclosed technology is generally directed towards optimization and control of wireless networks based on monitoring and/or analytics data received at a radio access network (RAN) controller device in a split RAN protocol architecture. The RAN controller device processes the monitoring/analytics data and provides control information and/or optimization data, which can be policy data, to a central unit device that can configure the wireless network based on the control information and/or optimization data. The technology can facilitate optimization and configuration of mobility procedures including handovers and secondary cell group changes, optimization of carrier aggregation and dual connectivity procedures based on multiple metrics, and can facilitate centralized optimization of topology and route selection for integrated access and backhaul nodes.
    Type: Application
    Filed: February 22, 2019
    Publication date: May 14, 2020
    Inventors: Thomas Novlan, Arunabha Ghosh, Milap Majmundar
  • Publication number: 20200153565
    Abstract: Facilitating hybrid automatic repeat request reliability improvement for advanced networks (e.g., 4G, 5G, 6G, and beyond) is provided herein. Operations of a system can comprise obtaining information related to a capability of a user equipment device and configuring the user equipment device with respect to control channel resources and a number of repetitions per slot based on the capability of the user equipment device. The operations can also comprise indicating the control channel resources and the number of repetitions per slot to the user equipment device via a control channel. Further, the operations can comprise detecting an acknowledgement, from the user equipment device, via an uplink control channel that comprises the control channel resources.
    Type: Application
    Filed: March 29, 2019
    Publication date: May 14, 2020
    Inventors: SaiRamesh Nammi, Milap Majmundar, Arunabha Ghosh
  • Publication number: 20200154266
    Abstract: In a 5G network, new radios (NR) can be deployed as a standalone radio access technology or as a non-standalone radio access technology assisted by another radio access technology. Long-term evolution (LTE), which is widely deployed can provide seamless coverage and uninterrupted connectivity, however NRs can provide significantly increased data rates or new services. However, the deployment of NR can be limited to hotspots under the footprint of LTE. Therefore, dual connectivity between LTE and NR can be utilized for non-standalone NR because control plane functions can be sent over LTE while the data plane can be managed on NR, allowing for simplified NR deployments where device support for both LTE and NR is available.
    Type: Application
    Filed: January 9, 2020
    Publication date: May 14, 2020
    Inventors: Thomas Novlan, Milap Majmundar, Arunabha Ghosh
  • Patent number: 10651912
    Abstract: Various embodiments disclosed herein provide for a reciprocity based channel state information acquisition scheme for frequency division duplex wireless communications systems. By converting channel state information from a traditional frequency-time domain to a Delay-Doppler domain, the channel state information feedback overhead can be reduced since the multi-path of radio propagation is reciprocal in terms of each ray and each cluster of antenna elements. Since the surrounding objects create the same multipath fading for both uplink and downlink transmissions, modeling the channel state information in the Delay-Doppler domain, and adjusting the sign of the Doppler value (negative/positive) can account for the multipath characteristics in both uplink and downlink.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: May 12, 2020
    Assignee: AT&T INTELLECTUAL PROPERTY I, L.P.
    Inventors: Xiaoyi Wang, Arunabha Ghosh, Salam Akoum
  • Patent number: 10651906
    Abstract: The technologies described herein are generally directed toward facilitating indicating frequency and time domain resources in communication systems with multiple transmission points. According to an embodiment, a system can comprise a processor and a memory that can store executable instructions that, when executed by the processor, facilitate performance of operations. The operations can include determining a first and a second transmission resource to use for transmission of a signal to a user device by, respectively, a first and a second network node. The operations can further include determining that the first and the second transmission resource comprise a same transmission resource. The operations can further include communicating, to a user equipment, a value corresponding to the first transmission resource and an indication that the first and the second transmission resource comprise the same transmission resource.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: May 12, 2020
    Assignee: AT&T INTELLECTUAL PROPERTY I, L.P.
    Inventors: SaiRamesh Nammi, Arunabha Ghosh, Ralf Bendlin
  • Publication number: 20200145162
    Abstract: Facilitating a signaling framework for configuring different types of reference signals for wireless communication systems is provided herein. A system can comprise: a processor; and a memory that stores executable instructions that, when executed by the processor, facilitate performance of operations. The operations can comprise: receiving a reference signal from a user equipment device; based on the reference signal generating a unique identifier from the reference signal; allocating a resource associated with the reference signal based on a reference signal type and a component carrier index list; associating the unique identifier with the resource, the component carrier index list, and the reference signal type in a data structure; and storing the data structure to the memory and transmitting the data structure to the user equipment device.
    Type: Application
    Filed: January 2, 2020
    Publication date: May 7, 2020
    Inventors: Xiaoyi Wang, Arunabha Ghosh, Salam Akoum, Thomas Novlan
  • Publication number: 20200146078
    Abstract: Long-term evolution assisted new radio initial access and mobility for 5G or other next generation networks are provided herein. A method can include transmitting, by a first network device of a wireless network and comprising a processor, a first timing synchronization signal and first acquisition information of the first network device to a mobile device. In response to the transmitting and based on a transmission received from the mobile device, a connection between the mobile device and a radio resource control of the wireless network can be facilitated. In addition, in response to the mobile device determining the location of the second timing synchronization signal based on the data indicative of the location of the second timing synchronization signal, the second network device can transmit, to the mobile device, the second timing synchronization signal and second acquisition information of the second network device.
    Type: Application
    Filed: January 2, 2020
    Publication date: May 7, 2020
    Inventors: Thomas Novlan, Salam Akoum, Arunabha Ghosh, Milap Majmundar
  • Publication number: 20200145136
    Abstract: An adaptive cyclic redundancy check process for uplink control information signaling is provided to allow a number of cyclic redundancy check bits to be adjusted based on the likelihood of data being corrupted during transmission. In an embodiment, a base station device can send a cyclic redundancy check length map to a mobile device that indicates to the mobile device to use a specific number of cyclic redundancy bits to use per a specified payload size of uplink control information. Optionally, the mobile device can determine a number of cyclic redundancy bits to include in the uplink control information, and use two stage uplink control information signaling to indicate to the base station how many cyclic redundancy check bits there are in the succeeding stage.
    Type: Application
    Filed: January 8, 2020
    Publication date: May 7, 2020
    Inventors: Xiaoyi Wang, SaiRamesh Nammi, Arunabha Ghosh
  • Publication number: 20200146109
    Abstract: Various embodiments disclosed herein provide for the provisioning of backhaul links over a 5G N R (New Radio) integrated access and backhaul (IAB) network for access nodes using non-5G radio access technologies. In this way, the IAB network can service devices that are connected to the core network via older 3GPP technologies, or even non-3GPP technologies such as Wi-Fi. An IAB mobile terminal can be provided at the end point access node to make the access node an IAB node. Using an existing internet protocol (IP) routing in the IAB network, or providing for an IP tunnel between the endpoint access node and the core network can then facilitate providing backhaul services for the non-5G access node.
    Type: Application
    Filed: March 7, 2019
    Publication date: May 7, 2020
    Inventors: Milap Majmundar, Thomas Novlan, Arunabha Ghosh, Andrew Thornburg
  • Publication number: 20200145088
    Abstract: Various embodiments disclosed herein provide for a beam recovery when there has been a partial control channel failure. Transient obstructions, and other interference effects can cause the failure of a beam pair link which can comprise a transmit beam and a receive beam associated with respective antennas on a transmitter and receiver. A group of control channels (downlink control channels) (configured as a control resource set “CORESET”) on a group of beam pair links can be associated with a group of uplink control resources (Physical Uplink Control Channel resources). When a subset of the CORESET group fails, the user equipment (UE) device can find another PUCCH that is associated with a working CORESET to send an indication to the network about the failure. When the network receives the indication, the network can switch the failed CORESET to a new beam pair link.
    Type: Application
    Filed: January 7, 2020
    Publication date: May 7, 2020
    Inventors: Xiaoyi Wang, Arunabha Ghosh, Salam Akoum
  • Publication number: 20200145286
    Abstract: In a 5G network, an integrated access and backhaul (IAB) deployment in a 5G network, can enable aggregation of multiple user equipment (UE) bearers into backhaul bearers based on factors such as route information of UE bearers and quality of service of UE bearers. Additionally, an adaptation layer can be configured to perform aggregation of data from UE bearers into backhaul bearers either above or below a radio link control layer. Thus, aggregation of data from UE bearers into backhaul bearers can be performed either above the RLC or below the RLC to take advantage of benefits from both options.
    Type: Application
    Filed: March 7, 2019
    Publication date: May 7, 2020
    Inventors: Milap Majmundar, Thomas Novlan, Arunabha Ghosh, Andrew Thornburg