Patents by Inventor Ashish Krupadanam

Ashish Krupadanam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10985588
    Abstract: A method and system for managing a battery system. The method including receiving at least one measured characteristic of the battery over a pre-defined time horizon from the at least one sensor, receiving at least one estimated characteristic of the battery from a electrochemical-based battery model based on differential algebraic equations, determining a cost function of a Moving Horizon Estimation based on the at least one measured characteristic and the at least one estimated characteristic, updating the electrochemical-based battery model based on the cost function, estimating at least one state of the at least one battery cell by applying the electrochemical-based battery model, and regulating at least one of charging or discharging of the battery based on the estimation of the at least one state of the at least one battery cell.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: April 20, 2021
    Assignee: ROBERT BOSCH GMBH
    Inventors: Anahita MirTabatabaei, Reinhardt Klein, Ashish Krupadanam, Nikhil Ravi, John F. Christensen
  • Patent number: 10886575
    Abstract: Methods and systems are described of managing a battery system. The battery system including at least one battery cell and one or more sensors configured to measure a temperature of the at least one battery cell. The method includes receiving a measurement of the temperature of the at least one battery cell, estimating an open circuit potential of the at least one battery cell, estimating a capacity fade of the at least one battery cell based on the open circuit potential of the at least one battery cell and a ratio of a change in the open circuit potential relative to a change in the temperature of the at least one battery cell, and regulating at least one of charging or discharging of the at least one battery cell based on the estimation of the capacity fade.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: January 5, 2021
    Assignee: Robert Bosch GmbH
    Inventors: John F. Christensen, Reinhardt Klein, Abdul-Kader Srouji, Ashish Krupadanam, Anahita MirTabatabaei, Nikhil Ravi
  • Patent number: 10686321
    Abstract: A method of managing a battery system, the battery system including at least one battery cell, at least one sensor configured to measure at least one characteristic of the battery cell, and a battery management system including a microprocessor and a memory, the method comprising receiving by the battery management system, from the at least one sensor at least one measured characteristic of the battery cell at a first time and at least one measured characteristic of the battery cell at a second time. The battery management system estimating, at least one state of the battery cell by applying a physics-based battery model, the physics based battery model being based on differential algebraic equations; and regulating by the battery management system, at least one of charging or discharging of the battery cell based on the at least one estimated state.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: June 16, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Nikhil Ravi, Anahita MirTabatabaei, Reinhardt Klein, Ashish Krupadanam, John F. Christensen, Aleksandar Kojic, Sarah Stewart, Sun Ung Kim, Christina Johnston
  • Patent number: 10447054
    Abstract: A battery management system comprising a processor and a memory storing instructions that, when executed by the processor, cause the battery management system to estimate one or more states of the battery by applying a battery model to account for physical parameters of a chemical composition of the battery based on one or more measured characteristics of the battery and the one or more estimated characteristics of the battery and regulate a first charging mode of the battery based on the estimation of the one or more states of the one or more battery cells and switch between the first charging mode and a second charging mode based on the estimation of the one or more states of the battery to allow for rapid charging of the battery.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: October 15, 2019
    Assignee: Robert Bosch GmbH
    Inventors: John F. Christensen, Reinhardt Klein, Ashish Krupadanam, Anahita MirTabatabaei, Nikhil Ravi
  • Patent number: 10447046
    Abstract: A battery system, having a battery management system configured to determine the state of charge and state of health of a secondary battery. The battery management system may export data to and receive inputs from a remote computer which calculates at least a portion of the state of health of the battery.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: October 15, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Nikhil Ravi, Anahita MirTabatabaei, Reinhardt Klein, Ashish Krupadanam, John F. Christensen
  • Patent number: 10389151
    Abstract: A method for charging a battery comprises: measuring a battery voltage with a voltage sensor and a battery current with a current sensor; applying, with a charging circuit, a first charging current to the battery until the measured battery voltage exceeds a predetermined voltage threshold, a magnitude of the first charging current being held at a first constant value; applying, with the charging circuit, in response to the measured battery voltage exceeding the predetermined voltage threshold, a second charging current to the battery until a cutoff criterion is satisfied, a magnitude of the second charging current being such that the battery voltage exceeds a steady state voltage limit for the battery; after the cutoff criterion is satisfied, determining a rest voltage of the battery; and updating the cutoff criterion based on a difference between the determined rest voltage and a target rest voltage.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: August 20, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Nikhil Ravi, Anantharaman Subbaraman, Reinhardt Klein, Ashish Krupadanam, Anahita MirTabatabaei, Gerd Simon Schmidt, Christoph Klee
  • Patent number: 10291046
    Abstract: A method for charging a battery comprises: measuring a battery voltage with a voltage sensor and a battery current with a current sensor; applying, with a charging circuit, a first charging current to the battery until the measured battery voltage exceeds a predetermined voltage threshold, a magnitude of the first charging current being held at a first constant value; applying, with the charging circuit, in response to the measured battery voltage exceeding the predetermined voltage threshold, a second charging current to the battery until a cutoff criterion is satisfied, a magnitude of the second charging current being such that the battery voltage exceeds a steady state voltage limit for the battery; after the cutoff criterion is satisfied, determining a rest voltage of the battery; and updating the cutoff criterion based on a difference between the determined rest voltage and a target rest voltage.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: May 14, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Nikhil Ravi, Anantharaman Subbaraman, Reinhardt Klein, Ashish Krupadanam, Anahita MirTabatabaei, Gerd Simon Schmidt, Christoph Klee
  • Patent number: 10263447
    Abstract: A method and system for managing a battery system. The method including receiving at least one measured characteristic of the battery over a pre-defined time horizon from the at least one sensor, receiving at least one estimated characteristic of the battery from a electrochemical-based battery model based on differential algebraic equations, determining a cost function of a Moving Horizon Estimation based on the at least one measured characteristic and the at least one estimated characteristic, updating the electrochemical-based battery model based on the cost function, estimating at least one state of the at least one battery cell by applying the electrochemical-based battery model, and regulating at least one of charging or discharging of the battery based on the estimation of the at least one state of the at least one battery cell.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: April 16, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Anahita MirTabatabaei, Reinhardt Klein, Ashish Krupadanam, Nikhil Ravi, John F. Christensen
  • Publication number: 20190109466
    Abstract: A method and system for managing a battery system. The method including receiving at least one measured characteristic of the battery over a pre-defined time horizon from the at least one sensor, receiving at least one estimated characteristic of the battery from a electrochemical-based battery model based on differential algebraic equations, determining a cost function of a Moving Horizon Estimation based on the at least one measured characteristic and the at least one estimated characteristic, updating the electrochemical-based battery model based on the cost function, estimating at least one state of the at least one battery cell by applying the electrochemical-based battery model, and regulating at least one of charging or discharging of the battery based on the estimation of the at least one state of the at least one battery cell.
    Type: Application
    Filed: November 20, 2018
    Publication date: April 11, 2019
    Inventors: Anahita MirTabatabaei, Reinhardt Klein, Ashish Krupadanam, Nikhil Ravi, John F. Christensen
  • Publication number: 20190089018
    Abstract: Methods and systems are described of managing a battery system. The battery system including at least one battery cell and one or more sensors configured to measure a temperature of the at least one battery cell. The method includes receiving a measurement of the temperature of the at least one battery cell, estimating an open circuit potential of the at least one battery cell, estimating a capacity fade of the at least one battery cell based on the open circuit potential of the at least one battery cell and a ratio of a change in the open circuit potential relative to a change in the temperature of the at least one battery cell, and regulating at least one of charging or discharging of the at least one battery cell based on the estimation of the capacity fade.
    Type: Application
    Filed: November 20, 2018
    Publication date: March 21, 2019
    Inventors: John F. Christensen, Reinhardt Klein, Abdul-Kader Srouji, Ashish Krupadanam, Anahita MirTabatabaei, Nikhil Ravi
  • Patent number: 10224579
    Abstract: Methods and systems are described of managing a battery system. The battery system including at least one battery cell and one or more sensors configured to measure a temperature of the at least one battery cell. The method includes receiving a measurement of the temperature of the at least one battery cell, estimating an open circuit potential of the at least one battery cell, estimating a capacity fade of the at least one battery cell based on the open circuit potential of the at least one battery cell and a ratio of a change in the open circuit potential relative to a change in the temperature of the at least one battery cell, and regulating at least one of charging or discharging of the at least one battery cell based on the estimation of the capacity fade.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: March 5, 2019
    Assignee: Robert Bosch GmbH
    Inventors: John F. Christensen, Reinhardt Klein, Abdul-Kader Srouji, Ashish Krupadanam, Anahita MirTabatabaei, Nikhil Ravi
  • Patent number: 10177419
    Abstract: Methods and systems are described of managing a battery system. The battery system including at least one battery cell and one or more sensors configured to measure a temperature of the at least one battery cell. The method includes receiving a measurement of the temperature of the at least one battery cell, estimating an open circuit potential of the at least one battery cell, estimating a capacity fade of the at least one battery cell based on the open circuit potential of the at least one battery cell and a ratio of a change in the open circuit potential relative to a change in the temperature of the at least one battery cell, and regulating at least one of charging or discharging of the at least one battery cell based on the estimation of the capacity fade.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: January 8, 2019
    Assignee: Robert Bosch GmbH
    Inventors: John F. Christensen, Reinhardt Klein, Abdul-Kader Srouji, Ashish Krupadanam, Anahita MirTabatabaei, Nikhil Ravi
  • Publication number: 20180145527
    Abstract: A method for charging a battery comprises: measuring a battery voltage with a voltage sensor and a battery current with a current sensor; applying, with a charging circuit, a first charging current to the battery until the measured battery voltage exceeds a predetermined voltage threshold, a magnitude of the first charging current being held at a first constant value; applying, with the charging circuit, in response to the measured battery voltage exceeding the predetermined voltage threshold, a second charging current to the battery until a cutoff criterion is satisfied, a magnitude of the second charging current being such that the battery voltage exceeds a steady state voltage limit for the battery; after the cutoff criterion is satisfied, determining a rest voltage of the battery; and updating the cutoff criterion based on a difference between the determined rest voltage and a target rest voltage.
    Type: Application
    Filed: October 9, 2017
    Publication date: May 24, 2018
    Inventors: Nikhil Ravi, Anantharaman Subbaraman, Reinhardt Klein, Ashish Krupadanam, Anahita MirTabatabaei, Gerd Simon Schmidt, Christoph Klee
  • Publication number: 20180145526
    Abstract: A method for charging a battery comprises: measuring a battery voltage with a voltage sensor and a battery current with a current sensor; applying, with a charging circuit, a first charging current to the battery until the measured battery voltage exceeds a predetermined voltage threshold, a magnitude of the first charging current being held at a first constant value; applying, with the charging circuit, in response to the measured battery voltage exceeding the predetermined voltage threshold, a second charging current to the battery until a cutoff criterion is satisfied, a magnitude of the second charging current being such that the battery voltage exceeds a steady state voltage limit for the battery; after the cutoff criterion is satisfied, determining a rest voltage of the battery; and updating the cutoff criterion based on a difference between the determined rest voltage and a target rest voltage.
    Type: Application
    Filed: June 19, 2017
    Publication date: May 24, 2018
    Inventors: Nikhil Ravi, Anantharaman Subbaraman, Reinhardt Klein, Ashish Krupadanam, Anahita MirTabatabaei, Gerd Simon Schmidt, Christoph Klee
  • Publication number: 20180083461
    Abstract: A battery system, having a battery management system configured to determine the state of charge and state of health of a secondary battery. The battery management system may export data to and receive inputs from a remote computer which calculates at least a portion of the state of health of the battery.
    Type: Application
    Filed: September 22, 2016
    Publication date: March 22, 2018
    Inventors: Nikhil Ravi, Anahita MirTabatabaei, Reinhardt Klein, Ashish Krupadanam, John F. Christensen
  • Publication number: 20170338666
    Abstract: A battery management system comprising a processor and a memory storing instructions that, when executed by the processor, cause the battery management system to estimate one or more states of the battery by applying a battery model to account for physical parameters of a chemical composition of the battery based on one or more measured characteristics of the battery and the one or more estimated characteristics of the battery and regulate a first charging mode of the battery based on the estimation of the one or more states of the one or more battery cells and switch between the first charging mode and a second charging mode based on the estimation of the one or more states of the battery to allow for rapid charging of the battery.
    Type: Application
    Filed: May 20, 2016
    Publication date: November 23, 2017
    Inventors: John F. Christensen, Reinhardt Klein, Ashish Krupadanam, Anahita MirTabatabaei, Nikhil Ravi
  • Publication number: 20170222449
    Abstract: A method and system for managing a battery system. The method including receiving at least one measured characteristic of the battery over a pre-defined time horizon from the at least one sensor, receiving at least one estimated characteristic of the battery from a electrochemical-based battery model based on differential algebraic equations, determining a cost function of a Moving Horizon Estimation based on the at least one measured characteristic and the at least one estimated characteristic, updating the electrochemical-based battery model based on the cost function, estimating at least one state of the at least one battery cell by applying the electrochemical-based battery model, and regulating at least one of charging or discharging of the battery based on the estimation of the at least one state of the at least one battery cell.
    Type: Application
    Filed: January 29, 2016
    Publication date: August 3, 2017
    Inventors: Anahita MirTabatabaei, Reinhardt Klein, Ashish Krupadanam, Nikhil Ravi, John F. Christensen
  • Publication number: 20170222447
    Abstract: A method of managing a battery system, the battery system including at least one battery cell, at least one sensor configured to measure at least one characteristic of the battery cell, and a battery management system including a microprocessor and a memory, the method comprising receiving by the battery management system, from the at least one sensor at least one measured characteristic of the battery cell at a first time and at least one measured characteristic of the battery cell at a second time. The battery management system estimating, at least one state of the battery cell by applying a physics-based battery model, the physics based battery model being based on differential algebraic equations; and regulating by the battery management system, at least one of charging or discharging of the battery cell based on the at least one estimated state.
    Type: Application
    Filed: January 29, 2016
    Publication date: August 3, 2017
    Inventors: Nikhil Ravi, Anahita MirTabatabaei, Reinhardt Klein, Ashish Krupadanam, John F. Christensen, Aleksandar Kojic, Sarah Stewart, Sun Ung Kim, Christina Johnston
  • Publication number: 20170194669
    Abstract: Methods and systems are described of managing a battery system. The battery system including at least one battery cell and one or more sensors configured to measure a temperature of the at least one battery cell. The method includes receiving a measurement of the temperature of the at least one battery cell, estimating an open circuit potential of the at least one battery cell, estimating a capacity fade of the at least one battery cell based on the open circuit potential of the at least one battery cell and a ratio of a change in the open circuit potential relative to a change in the temperature of the at least one battery cell, and regulating at least one of charging or discharging of the at least one battery cell based on the estimation of the capacity fade.
    Type: Application
    Filed: March 17, 2016
    Publication date: July 6, 2017
    Inventors: John F. Christensen, Reinhardt Klein, Abdul-Kader Srouji, Ashish Krupadanam, Anahita MirTabatabaei, Nikhil Ravi
  • Patent number: 8972085
    Abstract: A mode selection control system and method for controlling an electrically variable transmission. The system and method calculate respective costs for operating the vehicle in a plurality of operating modes based on a battery discharge penalty and the costs associated with operating the electrical and mechanical portions of the transmission. The method selects an operating mode having the lowest calculated cost.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: March 3, 2015
    Assignee: Chrysler Group LLC
    Inventors: Ashish Krupadanam, Nadirsh Patel, Goro Tamai