Patents by Inventor Atul Maheshwari

Atul Maheshwari has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220116045
    Abstract: An integrated circuit device that includes programmable logic circuitry that includes a plurality of regions each configured to operate at different voltage levels. The regions may be separated by level shifters that enable communication between the different voltage level regions. The integrated circuitry may also include software that performs voltage aware placement and routing for a user register-transfer level design, and may direct logic to regions according to voltages defined for the regions.
    Type: Application
    Filed: December 22, 2021
    Publication date: April 14, 2022
    Inventors: Mahesh K. Kumashikar, Ankireddy Nalamalpu, MD Altaf Hossain, Atul Maheshwari, Yuet Li, Mahesh A. Iyer
  • Publication number: 20220113350
    Abstract: Systems or methods of the present disclosure may provide a programmable logic device including multiple logic array blocks each having multiple programmable elements. The multiple logic array blocks are arranged in multiple rows that are segmented into multiple segments. The programmable logic device also includes repair circuitry disposed between the multiple segments. The repair circuitry remaps logic within a first segment of the multiple segments when a first logic array block of the multiple logic array blocks has failed. Moreover, the first segment includes the first logic array block.
    Type: Application
    Filed: December 22, 2021
    Publication date: April 14, 2022
    Inventors: Dheeraj Subbareddy, Arun Jangity, Ramya Yeluri, Mahesh K. Kumashikar, Atul Maheshwari, Ankireddy Nalamalpu
  • Publication number: 20220116038
    Abstract: Systems or methods described herein may relate to latch-independent clock gating techniques to enable or disable an internal clock of an integrated circuit device. A programmable logic device includes a clock gating circuit that receives a clock signal and is latch independent. The clock gating circuit includes gating signal circuitry that generates a gating signal based on the clock signal and an enable signal. The clock gating circuit also includes a logic gate that generates a control signal based on the gating signal. The clock gating circuit also includes gated clock generation circuitry that generates a gated clock signal based on the clock signal and the control signal.
    Type: Application
    Filed: December 22, 2021
    Publication date: April 14, 2022
    Inventors: Mahesh K. Kumashikar, MD Altaf Hossain, Yuet Li, Atul Maheshwari, Ankireddy Nalamalpu
  • Publication number: 20220115315
    Abstract: A reticle-stitched integrated circuit is provided. The reticle-stitched integrated circuit extends over a first die area and a second die area of an integrated circuit wafer. While individually the first die area and the second die area are within their respective reticle limits, collectively the first die area and the second die area exceed the reticle limit. A first layer of the reticle-stitched integrated circuit may have communication wires that remain exclusively in only one of the first die area and the second die area. A second layer of the reticle-stitched integrated circuit may have communication wires that overlap the first die area and the second die area, thereby allowing communication between the two die areas and enabling the reticle-stitched integrated circuit to exceed the limit of the reticle.
    Type: Application
    Filed: December 22, 2021
    Publication date: April 14, 2022
    Inventors: Atul Maheshwari, Ankireddy Nalamalpu, Mahesh K. Kumashikar, David Parkhouse
  • Publication number: 20220113694
    Abstract: Systems or methods of the present disclosure may provide efficient power consumption for programmable logic devices based on reducing guardband voltages. A programmable logic device may include circuit monitors to mimic critical paths of an implemented circuit design and generate timing information based on the critical paths. A controller on the programmable logic device may adjust the voltage guardband based on the timing information.
    Type: Application
    Filed: December 22, 2021
    Publication date: April 14, 2022
    Inventors: Mahesh K. Kumashikar, MD Altaf Hossain, Mahesh A. Iyer, Yuet Li, Atul Maheshwari, Ankireddy Nalamalpu
  • Publication number: 20220114316
    Abstract: Systems or methods of the present disclosure may provide for determining a loadline for operation of a programmable logic fabric where the loadline is based at least in part on design configuration details for a design or a configuration rather for generic deployment of the programmable logic device. The loadline may be determined using software modeling for the design or configuration. Additionally or alternatively, the loadline may be determined using runtime testing and sensing of real-world parameters. This determination based on real-world parameters of a deployment of the configuration or design is based on a determination of a step load for the design or configuration.
    Type: Application
    Filed: December 22, 2021
    Publication date: April 14, 2022
    Inventors: Yuet Li, Ankireddy Nalamalpu, Atul Maheshwari, MD Altaf Hossain, Mahesh K. Kumashikar, Mahesh A. Iyer
  • Publication number: 20220113788
    Abstract: The present disclosure describes programmable logic that may be operated in a turbo processing mode to cause an ongoing operation to be completed faster than a scheduled completion time. With at least some of the remaining time to the scheduled completion time, power savings may be realized by operating the programmable logic into a deep sleep mode, where configuration memory associated with the programmable logic may be set to a suitable voltage level as to not cause data loss at lower or zero voltage levels but otherwise realize power savings relative to an amount of power consumed during average processing operations.
    Type: Application
    Filed: December 22, 2021
    Publication date: April 14, 2022
    Inventors: Mahesh K. Kumashikar, Ankireddy Nalamalpu, Mahesh A. Iyer, Atul Maheshwari, Yuet Li, MD Altaf Hossain
  • Publication number: 20220116042
    Abstract: Embodiments of the present disclosure are related to dynamically adjusting a timing and/or power model for a programmable logic device. In particular, the present disclosure is directed to adjusting a timing and/or power model of the programmable logic device that operates at a voltage level that is not other than a predefined voltage defined by a voltage library. A system of the present disclosure may interpolate between voltage levels defined by the voltage libraries to generate a new voltage library for the programmable logic device. A timing and/or power model may be generated for the programmable logic device based on the new voltage library and the programmable logic device may be analyzed using the timing and/or power model at the interpolated voltage. The timing and/or power model may be used to generate a bitstream that is used to program the integrated circuit.
    Type: Application
    Filed: December 22, 2021
    Publication date: April 14, 2022
    Inventors: Atul Maheshwari, Mahesh Iyer, Mahesh K. Kumashikar, Ian Kuon, Yuet Li, Ankireddy Nalamalpu, Dheeraj Subbareddy
  • Publication number: 20220115959
    Abstract: Systems or methods of the present disclosure may provide for operating a programmable fabric including multiple programmable elements organized into a number of power domains that utilize a common voltage within the respective power domains. A current sensor senses a current of the programmable fabric. When the sensed current has crossed a threshold, the programmable fabric changes the number of power domains.
    Type: Application
    Filed: December 22, 2021
    Publication date: April 14, 2022
    Inventors: MD Altaf Hossain, Ankireddy Nalamalpu, Mahesh K. Kumashikar, Dheeraj Subbareddy, Atul Maheshwari, Mahesh A. Iyer
  • Publication number: 20220116041
    Abstract: Systems or methods of the present disclosure may provide efficient electric power consumption of programmable logic devices based on providing different voltage levels to different portions (e.g., voltage islands) of the programmable logic device. For example, the programmable logic device may include circuitry to provide different voltage levels to different voltage islands. The programmable logic device may implement and operate logic configurations with different operating parameters using different operating voltages for efficient electric power consumption.
    Type: Application
    Filed: December 22, 2021
    Publication date: April 14, 2022
    Inventors: Mahesh K. Kumashikar, Ankireddy Nalamalpu, MD Altaf Hossain, Dheeraj Subbareddy, Atul Maheshwari, Yuet Li, Mahesh A. Iyer
  • Publication number: 20220044123
    Abstract: Processors may be enhanced by embedding programmable logic devices, such as field-programmable gate arrays. For instance, an application-specific integrated circuit device may include main fixed function circuitry operable to perform a main fixed function of the application-specific integrated circuit device. The application-specific integrated circuit also includes a support processor that performs operations outside of the main fixed function of the application-specific integrated circuit device, wherein the support processor comprises an embedded programmable fabric to provide programmable flexibility to application-specific integrated circuit device.
    Type: Application
    Filed: September 24, 2021
    Publication date: February 10, 2022
    Inventors: Rajesh Vivekanandham, Dheeraj Subbareddy, Dheemanth Nagaraj, Vijay S. R. Degalahal, Anshuman Thakur, Ankireddy Nalamalpu, MD Altaf Hossain, Mahesh Kumashikar, Atul Maheshwari
  • Publication number: 20220013488
    Abstract: An integrated circuit device includes multiple microbumps and a top programmable fabric die including a first programmable fabric and a first microbump interface coupled to the multiple microbumps. The integrated circuit device also includes a base programmable fabric die having a second programmable fabric and a second microbump interface coupled to the first microbump interface via a coupling to the multiple microbumps. The top programmable fabric die and the base programmable fabric die have a same design. Moreover, the top programmable fabric die and the base programmable fabric die are arranged in a three-dimensional die arrangement with the top programmable fabric die flipped above the base programmable fabric die.
    Type: Application
    Filed: September 24, 2021
    Publication date: January 13, 2022
    Inventors: Mahesh K. Kumashikar, Dheeraj Subbareddy, Ankireddy Nalamalpu, MD Altaf Hossain, Atul Maheshwari
  • Publication number: 20220011811
    Abstract: A semiconductor device may include a programmable fabric and a processor. The processor may utilize one or more extension architectures. At least one of these extension architectures may be used to integrate and/or embed the programmable fabric into the processor as part of the processor. Systems and methods for transitioning data between the programmable fabric and the processor associated with different clock domains is described.
    Type: Application
    Filed: September 24, 2021
    Publication date: January 13, 2022
    Inventors: Dheeraj Subbareddy, Anshuman Thakur, Atul Maheshwari, Mahesh Kumashikar, MD Altaf Hossain, Ankireddy Nalamalpu
  • Publication number: 20220014197
    Abstract: An integrated circuit includes first and second routing crossbars. The second routing crossbar includes first conductors routed in a first direction in a first conductive layer and second conductors routed in a second direction that is perpendicular to the first direction in a second conductive layer. A first subset of the first conductors is coupled to the first routing crossbar. The first subset of the first conductors is coupled to a second subset of the first conductors through a first subset of the second conductors that is coupled to the first and second subsets of the first conductors through first vias. The second subset of the first conductors is coupled to a second subset of the second conductors to through second vias. At least one of the first conductors is decoupled from another one of the first conductors by third vias.
    Type: Application
    Filed: September 23, 2021
    Publication date: January 13, 2022
    Applicant: Intel Corporation
    Inventors: Atul Maheshwari, Wayson Lowe, David Parkhouse, Alexander Andreev, Ban Wong
  • Publication number: 20220014202
    Abstract: The present disclosure is directed to 3-D stacked architecture for Programmable Fabrics and Central Processing Units (CPUs). The 3-D stacked orientation enables reconfigurability of the fabric, and allows the fabric to function using coarse-grained and fine-grained acceleration for offloading CPU processing. Additionally, the programmable fabric may be able to function to interface with multiple other compute chiplet components in the 3-D stacked orientation. This enables multiple compute components to communicate without the need for offloading the data communications between the compute chiplets.
    Type: Application
    Filed: September 24, 2021
    Publication date: January 13, 2022
    Inventors: Rahul Pal, Dheeraj Subbareddy, Mahesh Kumashikar, Dheemanth Nagaraj, Rajesh Vivekanandham, Anshuman Thakur, Ankireddy Nalamalpu, MD Altaf Hossain, Atul Maheshwari
  • Patent number: 9450592
    Abstract: Methods and systems to control an output frequency relative to a reference frequency. A frequency control system includes a dual-input bias generator to separately receive management and operational controls. The bias generator includes a first bias generator circuit to generate a bias control based on a difference between the management control and a bias feedback reference during a first mode of operation, a second bias generator circuit to generate the bias control based on a difference between the operational control and the bias feedback reference during a second mode of operation, and a bias feedback reference circuit to generate the bias feedback reference based on the bias control. The first mode may include a characterization and/or a start-up mode. The second mode may include an operational mode, such as a feedback-controlled mode.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: September 20, 2016
    Assignee: Intel Corporation
    Inventors: Atul Maheshwari, Parker J. Rachel, Kuan-Yueh James Shen
  • Publication number: 20140340129
    Abstract: Methods and systems to control an output frequency relative to a reference frequency. A frequency control system includes a dual-input bias generator to separately receive management and operational controls. The bias generator includes a first bias generator circuit to generate a bias control based on a difference between the management control and a bias feedback reference during a first mode of operation, a second bias generator circuit to generate the bias control based on a difference between the operational control and the bias feedback reference during a second mode of operation, and a bias feedback reference circuit to generate the bias feedback reference based on the bias control. The first mode may include a characterization and/or a start-up mode. The second mode may include an operational mode, such as a feedback-controlled mode.
    Type: Application
    Filed: April 13, 2012
    Publication date: November 20, 2014
    Inventors: Atul Maheshwari, Parker J. Rachel, Kuan-Yueh James Shen
  • Patent number: 8314725
    Abstract: In one embodiment, an analog-to-digital conversion in an integrated circuit is evaluated by an on-die testing circuit. For example, the on-die test circuit 370 can characterize one or both of the linearity and monotonicity of the digital-to-analog conversion. The value of a conversion output for a digital input code may be compared to the value of a prior conversion output of a prior step to provide digital difference values for each step of a sweep of digital input codes. Digital difference values may be compared to one or more predetermined limits to provide one or more pass/fail tests on-board the die. Other embodiments are described and claimed.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: November 20, 2012
    Assignee: Intel Corporation
    Inventors: Paola Zepeda, David E. Duarte, Gregory F. Taylor, Atul Maheshwari
  • Patent number: 8264287
    Abstract: An analog-to-digital converter (ADC) suitable for measuring on-die DC or low frequency analog voltages may include a ring oscillator having a group of circuit cells successively and circularly coupled. Under certain circumstances, the ring oscillator may produce an output frequency that corresponds substantially linear to the input voltage. Other embodiments may be disclosed or claimed.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: September 11, 2012
    Assignee: Intel Corporation
    Inventor: Atul Maheshwari
  • Publication number: 20120062401
    Abstract: In one embodiment, an analog-to-digital conversion in an integrated circuit is evaluated by an on-die testing circuit. For example, the on-die test circuit 370 can characterize one or both of the linearity and monotonicity of the digital-to-analog conversion. The value of a conversion output for a digital input code may be compared to the value of a prior conversion output of a prior step to provide digital difference values for each step of a sweep of digital input codes. Digital difference values may be compared to one or more predetermined limits to provide one or more pass/fail tests on-board the die. Other embodiments are described and claimed.
    Type: Application
    Filed: September 15, 2010
    Publication date: March 15, 2012
    Inventors: Paola ZEPEDA, David E. DUARTE, Gregory F. TAYLOR, Atul MAHESHWARI