Patents by Inventor Avgerinos V. Gelatos

Avgerinos V. Gelatos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210319983
    Abstract: Methods and apparatus for depositing a coating on a semiconductor manufacturing apparatus component are provided herein. In some embodiments, a method of depositing a coating on a semiconductor manufacturing apparatus component includes: sequentially exposing a semiconductor manufacturing apparatus component including nickel or nickel alloy to an aluminum precursor and a reactant to form an aluminum containing layer on a surface of the semiconductor manufacturing apparatus component by a deposition process.
    Type: Application
    Filed: April 11, 2020
    Publication date: October 14, 2021
    Inventors: Pingyan LEI, Dien-Yeh WU, Xiao Ming HE, Jennifer Y. SUN, Lei ZHOU, Takashi KURATOMI, Avgerinos V. GELATOS, Mei CHANG, Steven D. MARCUS
  • Patent number: 11114320
    Abstract: Embodiments disclosed herein include a processing system and a method of forming a contact. The processing system includes a plurality of process chambers configured to deposit, etch, and/or anneal a source/drain region of a substrate. The method includes depositing a doped semiconductor layer over a source/drain region, forming an anchor layer in a trench, and depositing a conductor in the trench. The method of forming a contact results in reduced contact resistance by using integrated processes, which allows various operations of the source/drain contact formation to be performed within the same processing system.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: September 7, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Gaurav Thareja, Takashi Kuratomi, Avgerinos V. Gelatos, Xianmin Tang, Sanjay Natarajan, Keyvan Kashefizadeh, Zhebo Chen, Jianxin Lei, Shashank Sharma
  • Publication number: 20210225655
    Abstract: Provided are atomic layer deposition methods to deposit a tungsten film or tungsten-containing film using a tungsten-containing reactive gas comprising one or more of tungsten pentachloride, a compound with the empirical formula WCl5 or WCl6.
    Type: Application
    Filed: April 6, 2021
    Publication date: July 22, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Xinyu Fu, Srinivas Gandikota, Avgerinos V. Gelatos, Atif Noori, Mei Chang, David Thompson, Steve G. Ghanayem
  • Patent number: 10985023
    Abstract: Provided are atomic layer deposition methods to deposit a tungsten film or tungsten-containing film using a tungsten-containing reactive gas comprising one or more of tungsten pentachloride, a compound with the empirical formula WCl5 or WCl6.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: April 20, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xinyu Fu, Srinivas Gandikota, Avgerinos V. Gelatos, Atif Noori, Mei Chang, David Thompson, Steve G. Ghanayem
  • Publication number: 20200303250
    Abstract: The present disclosure generally relates to methods for processing of substrates, and more particularly relates to methods for forming a metal gapfill. In one implementation, the method includes forming a metal gapfill in an opening using a multi-step process. The multi-step process includes forming a first portion of the metal gapfill, performing a sputter process to form one or more layers on one or more side walls, and growing a second portion of the metal gapfill to fill the opening with the metal gapfill. The metal gapfill formed by the multi-step process is seamless, and the one or more layers formed on the one or more side walls seal any gaps or defects between the metal gapfill and the side walls. As a result, fluids utilized in subsequent processes do not diffuse through the metal gapfill.
    Type: Application
    Filed: February 27, 2020
    Publication date: September 24, 2020
    Inventors: Xi CEN, Feiyue MA, Kai WU, Yu LEI, Kazuya DAITO, Yi XU, Vikash BANTHIA, Mei CHANG, He REN, Raymond Hoiman HUNG, Yakuan YAO, Avgerinos V. GELATOS, David T. OR, Jing ZHOU, Guoqiang JIAN, Chi-Chou LIN, Yiming LAI, Jia YE, Jenn-Yue WANG
  • Patent number: 10770300
    Abstract: Methods and apparatus to selectively deposit metal films (e.g., titanium films) are described. One of the precursors is energized to form ions and radicals of the precursor. The precursors flow through separate channels of a dual channel gas distribution assembly to react in a processing region above a substrate.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: September 8, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Takashi Kuratomi, Avgerinos V. Gelatos, I-Cheng Chen, Faruk Gungor
  • Publication number: 20200251340
    Abstract: Methods and apparatus for filling a feature disposed in a substrate, including: depositing a first metal within the feature to a first predetermined thickness in a first process chamber; etching the first metal to remove a first portion of the metal at a top of the feature in a second process chamber different than the first process chamber to form an exposed surface of the first metal, and selectively depositing a second metal atop the exposed surface of the first metal within the feature to a second predetermined thickness in a third process chamber; wherein etching the first metal and selectively depositing a second metal are performed without oxygen contacting the top surface.
    Type: Application
    Filed: January 29, 2020
    Publication date: August 6, 2020
    Inventors: ROEY SHAVIV, AVGERINOS V. GELATOS, ISMAIL EMESH, XIKUN WANG, YU LEI
  • Publication number: 20200211852
    Abstract: Methods and apparatus for selectively depositing a titanium material layer atop a substrate having a silicon surface and a dielectric surface are disclosed. In embodiments an apparatus is configured for forming a remote plasma reaction between titanium tetrachloride (TiCl4), hydrogen (H2) and argon (Ar) in a region between a lid heater and a showerhead of a process chamber at a first temperature of 200 to 800 degrees Celsius; and flowing reaction products into the process chamber to selectively form a titanium material layer upon the silicon surface of the substrate.
    Type: Application
    Filed: December 5, 2019
    Publication date: July 2, 2020
    Inventors: TAKASHI KURATOMI, I-CHENG CHEN, AVGERINOS V. GELATOS, PINGYAN LEI, MEI CHANG, XIANMIN TANG
  • Patent number: 10699946
    Abstract: Methods for depositing a metal layer in a feature definition of a semiconductor device are provided. In one implementation, a method for depositing a metal layer for forming a semiconductor device is provided. The method comprises performing a cyclic metal deposition process to deposit a metal layer on a substrate and annealing the metal layer disposed on the substrate. The cyclic metal deposition process comprises exposing the substrate to a deposition precursor gas mixture to deposit a portion of the metal layer on the substrate, exposing the portion of the metal layer to either a plasma treatment process or hydrogen annealing process and repeating the exposing the substrate to a deposition precursor gas mixture and exposing the portion of the metal layer to either a plasma treatment process or hydrogen annealing process until a predetermined thickness of the metal layer is achieved.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: June 30, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bhushan N. Zope, Avgerinos V. Gelatos, Bo Zheng, Yu Lei, Xinyu Fu, Srinivas Gandikota, Sang Ho Yu, Mathew Abraham
  • Publication number: 20200203481
    Abstract: Embodiments disclosed herein include a processing system and a method of forming a contact. The processing system includes a plurality of process chambers configured to deposit, etch, and/or anneal a source/drain region of a substrate. The method includes depositing a doped semiconductor layer over a source/drain region, forming an anchor layer in a trench, and depositing a conductor in the trench. The method of forming a contact results in reduced contact resistance by using integrated processes, which allows various operations of the source/drain contact formation to be performed within the same processing system.
    Type: Application
    Filed: November 21, 2019
    Publication date: June 25, 2020
    Inventors: Gaurav THAREJA, Takashi KURATOMI, Avgerinos V. GELATOS, Xianmin TANG, Sanjay NATARAJAN, Keyvan KASHEFIZADEH, Zhebo CHEN, Jianxin LEI, Shashank SHARMA
  • Patent number: 10615034
    Abstract: The present disclosure generally relates to methods for removing contaminants and native oxides from substrate surfaces. The method includes exposing a surface of the substrate to first hydrogen radical species, wherein the substrate is silicon germanium having a concentration of germanium above about 30%, then exposing the surface of the substrate to a plasma formed from a fluorine-containing precursor and a hydrogen-containing precursor, and then exposing the surface of the substrate to second hydrogen radical species.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: April 7, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bo Zheng, Avgerinos V. Gelatos, Anshul Vyas, Raymond Hoiman Hung
  • Patent number: 10535527
    Abstract: A method for forming a film on a substrate in a semiconductor process chamber includes forming a first layer on the substrate using a plasma enhanced process and a gas compound of a chloride-based gas, a hydrogen gas, and an inert gas. The process chamber is then purged and the first layer is thermally soaked with a hydrogen-based precursor gas. The process chamber is then purged again and the process may be repeated with or without the plasma enhanced process until a certain film thickness is achieved on the substrate.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: January 14, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yi Xu, Takashi Kuratomi, Avgerinos V. Gelatos, Vikash Banthia, Mei Chang, Kazuya Daito
  • Publication number: 20200013627
    Abstract: Methods and apparatus to selectively deposit metal films (e.g., titanium films) are described. One of the precursors is energized to form ions and radicals of the precursor. The precursors flow through separate channels of a dual channel gas distribution assembly to react in a processing region above a substrate.
    Type: Application
    Filed: September 16, 2019
    Publication date: January 9, 2020
    Inventors: Takashi Kuratomi, Avgerinos V. Gelatos, I-Cheng Chen, Faruk Gungor
  • Publication number: 20190326115
    Abstract: The present disclosure generally relates to methods for removing contaminants and native oxides from substrate surfaces. The method includes exposing a surface of the substrate to first hydrogen radical species, wherein the substrate is silicon germanium having a concentration of germanium above about 30%, then exposing the surface of the substrate to a plasma formed from a fluorine-containing precursor and a hydrogen-containing precursor, and then exposing the surface of the substrate to second hydrogen radical species.
    Type: Application
    Filed: December 26, 2018
    Publication date: October 24, 2019
    Inventors: Bo Zheng, Avgerinos V. Gelatos, Anshul Vyas, Raymond Hoiman Hung
  • Patent number: 10418246
    Abstract: Methods and apparatus to selectively deposit metal films (e.g., titanium films) are described. One of the precursors is energized to form ions and radicals of the precursor. The precursors flow through separate channels of a dual channel gas distribution assembly to react in a processing region above a substrate.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: September 17, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Takashi Kuratomi, Avgerinos V. Gelatos, I-Cheng Chen, Faruk Gungor
  • Publication number: 20190229007
    Abstract: Methods and apparatus for processing substrates are provided herein. In some embodiments, a process kit for a substrate support includes: an upper edge ring made of quartz and having an upper surface and a lower surface, wherein the upper surface is substantially planar and the lower surface includes a stepped lower surface to define a radially outermost portion and a radially innermost portion of the upper edge ring.
    Type: Application
    Filed: January 16, 2019
    Publication date: July 25, 2019
    Inventors: MUHANNAD MUSTAFA, MUHAMMAD M. RASHEED, YU LEI, AVGERINOS V. GELATOS, VIKASH BANTHIA, VICTOR H. CALDERON, SHI WEI TOH, YUNG-HSIN LEE, ANINDITA SEN
  • Patent number: 10269633
    Abstract: Methods for depositing a contact metal layer in contact structures of a semiconductor device are provided. In one embodiment, a method for depositing a contact metal layer for forming a contact structure in a semiconductor device is provided. The method comprises performing a cyclic metal deposition process to deposit a contact metal layer on a substrate and annealing the contact metal layer disposed on the substrate. The cyclic metal deposition process comprises exposing the substrate to a deposition precursor gas mixture to deposit a portion of the contact metal layer on the substrate, exposing the portion of the contact metal layer to a plasma treatment process, and repeating the exposing the substrate to a deposition precursor gas mixture and exposing the portion of the contact metal layer to a plasma treatment process until a predetermined thickness of the contact metal layer is achieved.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: April 23, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bhushan N. Zope, Avgerinos V. Gelatos, Bo Zheng, Yu Lei, Xinyu Fu, Srinivas Gandikota, Sang-Ho Yu, Mathew Abraham
  • Patent number: 10256076
    Abstract: Methods of etching include cycles of low temperature etching of a material layer disposed on a substrate, with at least one of the cycles being followed by activation of unreacted etchant deposits during an inert gas plasma treatment. In some embodiments, a method includes: positioning a substrate in a processing chamber; generating, in a first etching cycle, a plasma from a gas mixture within the processing chamber to form a processing gas including an etchant; exposing, to the etchant, a portion of a material layer disposed on a substrate maintained at a first temperature; generating an inert gas plasma within the processing chamber; generating, in a second etching cycle, a plasma from a gas mixture within the processing chamber to form a processing gas including an etchant; and heating the substrate to a second temperature to sublimate a byproduct of reaction between the etchant and the material layer.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: April 9, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Shi Wei Toh, Avgerinos V. Gelatos, Vikash Banthia
  • Publication number: 20190078210
    Abstract: Apparatus for processing a substrate are provided herein. In some embodiments a showerhead assembly includes a gas distribution plate having a plurality of apertures; a holder having a wall, an radially inwardly extending flange extending from a lower portion of the wall and coupled to the gas distribution plate, and a radially outwardly extending flange extending from an upper portion of the wall, wherein the wall has a thickness between about 0.015 inches and about 0.2 inches; and a heating apparatus disposed above and spaced apart from the gas distribution plate, wherein the heating apparatus includes a heater configured to heat the gas distribution plate.
    Type: Application
    Filed: September 12, 2017
    Publication date: March 14, 2019
    Inventors: FARUK GUNGOR, DIEN-YEH WU, JOEL M. HUSTON, MEI CHANG, XIAOXIONG YUAN, KAZUYA DAITO, AVGERINOS V. GELATOS, TAKASHI KURATOMI, YU CHANG, BIN CAO
  • Patent number: 10199230
    Abstract: Methods for selectively depositing a metal silicide layer are provided herein.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: February 5, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Seshadri Ganguli, Yixiong Yang, Bhushan N. Zope, Xinyu Fu, Avgerinos V. Gelatos, Guoqiang Jian, Bo Zheng