Patents by Inventor Badri Amurthur

Badri Amurthur has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190168001
    Abstract: Systems and methods are provided for delivering neurostimulation therapies to patients for treating chronic heart failure. A neural fulcrum zone is identified and ongoing neurostimulation therapy is delivered within the neural fulcrum zone. The implanted stimulation device includes a physiological sensor for recording the patient's response to the neurostimulation therapy on an ambulatory basis over extended periods of time.
    Type: Application
    Filed: February 1, 2019
    Publication date: June 6, 2019
    Applicants: LIVANOVA USA, INC., EAST TENNESSEE STATE UNIVERSITY
    Inventors: Imad Libbus, Badri Amurthur, Bruce H. KenKnight, Jeffrey L. Ardell
  • Publication number: 20190167999
    Abstract: An implantable neurostimulator-implemented method for managing tachyarrhythmias through vagus nerve stimulation is provided. An implantable neurostimulator, including a pulse generator, is configured to deliver electrical therapeutic stimulation in a manner that results in creation and propagation (in both afferent and efferent directions) of action potentials within neuronal fibers of a patient's cervical vagus nerve. Operating modes of the pulse generator are stored. A maintenance dose of the electrical therapeutic stimulation is delivered to the vagus nerve via the pulse generator to restore cardiac autonomic balance through continuously-cycling, intermittent and periodic electrical pulses. A restorative dose of the electrical therapeutic stimulation is delivered to prevent initiation of or disrupt tachyarrhythmia through periodic electrical pulses delivered at higher intensity than the maintenance dose.
    Type: Application
    Filed: February 1, 2019
    Publication date: June 6, 2019
    Applicant: LivaNova USA, Inc.
    Inventors: Imad Libbus, Badri Amurthur, Bruce H. KenKnight
  • Patent number: 10300284
    Abstract: Systems and methods are provided for delivering neurostimulation therapies to patients for treating chronic heart failure. A neural fulcrum zone is identified and ongoing neurostimulation therapy is delivered within the neural fulcrum zone. This neural fulcrum zone corresponds to a combination of stimulation parameters at which autonomic engagement is achieved, while the tachycardia-inducing stimulation effects are offset by the bradycardia-inducing effects, thereby minimizing side effects such as significant heart rate changes while providing a therapeutic level of stimulation.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: May 28, 2019
    Assignees: LivaNova USA, Inc., East Tennessee State University
    Inventors: Bruce H. KenKnight, Jeffrey L. Ardell, Imad Libbus, Badri Amurthur
  • Publication number: 20190126045
    Abstract: Systems and methods are provided for delivering neurostimulation therapies to patients for treating chronic heart failure. A neural fulcrum zone is identified and ongoing neurostimulation therapy is delivered within the neural fulcrum zone. The implanted stimulation device includes a physiological sensor for monitoring the patient's response to the neurostimulation therapy on an ambulatory basis over extended periods of time and a control system for adjusting stimulation parameters to maintain stimulation in the neural fulcrum zone based on detected changes in the physiological response to stimulation.
    Type: Application
    Filed: December 27, 2018
    Publication date: May 2, 2019
    Applicants: LivaNova USA, Inc., East Tennessee State University
    Inventors: Imad Libbus, Badri Amurthur, Bruce H. KenKnight, Jeffrey L. Ardell
  • Publication number: 20190076657
    Abstract: Systems and methods for customizable titration of an implantable neurostimulator are provided. A method of titrating a neurostimulation signal delivered to a patient from an implantable pulse generator includes delivering a first neurostimulation signal with a first set of parameters, increasing a first value of the first neurostimulation signal at a first rate for a first period of time while delivering the first neurostimulation signal, ceasing delivery of the first neurostimulation signal when the first value reaches a first target value, delivering a second neurostimulation signal with a second set of parameters, and increasing the second neurostimulation signal at a second rate for a second period of time while delivering the second neurostimulation signal.
    Type: Application
    Filed: September 13, 2018
    Publication date: March 14, 2019
    Inventors: Scott Stubbs, Imad Libbus, Scott Mazar, Bruce KenKnight, Badri Amurthur
  • Publication number: 20190076656
    Abstract: A method of neurostimulation titration. The method includes setting titration parameters for an electrical signal delivered by an implantable medical device, initiating titration with the titration parameters and an aggressiveness profile, performing titration by increasing at least one of a current amplitude, a frequency, a pulse width or a duty cycle of the electrical signal until a threshold is reached or a side effect is detected, pausing the titration while waiting for commands from the patient or caregiver, and resuming the titration in response to receiving authorization from an external device.
    Type: Application
    Filed: November 9, 2018
    Publication date: March 14, 2019
    Applicant: CYBERONICS, INC.
    Inventors: Scott Stubbs, Imad Libbus, Scott Mazar, Bruce H. KenKnight, Badri Amurthur
  • Patent number: 10220212
    Abstract: Systems and methods are provided for delivering neurostimulation therapies to patients for treating chronic heart failure. A titration process is used to gradually increase the stimulation intensity to a desired therapeutic level. This titration process can minimize the amount of time required to complete titration so as to begin delivery of the stimulation at therapeutically desirable levels.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: March 5, 2019
    Assignee: LivaNova USA, Inc.
    Inventors: Imad Libbus, Bruce H. Kenknight, Badri Amurthur
  • Patent number: 10195437
    Abstract: An implantable neurostimulator-implemented method for managing tachyarrhythmias through vagus nerve stimulation is provided. An implantable neurostimulator, including a pulse generator, is configured to deliver electrical therapeutic stimulation in a manner that results in creation and propagation (in both afferent and efferent directions) of action potentials within neuronal fibers of a patient's cervical vagus nerve. Operating modes of the pulse generator are stored. A maintenance dose of the electrical therapeutic stimulation is delivered to the vagus nerve via the pulse generator to restore cardiac autonomic balance through continuously-cycling, intermittent and periodic electrical pulses. A restorative dose of the electrical therapeutic stimulation is delivered to prevent initiation of or disrupt tachyarrhythmia through periodic electrical pulses delivered at higher intensity than the maintenance dose.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: February 5, 2019
    Assignee: Cyberonics, Inc.
    Inventors: Imad Libbus, Badri Amurthur, Bruce H. KenKnight
  • Patent number: 10195438
    Abstract: Systems and methods are provided for delivering neurostimulation therapies to patients for treating chronic heart failure. A neural fulcrum zone is identified and ongoing neurostimulation therapy is delivered within the neural fulcrum zone. The implanted stimulation device includes a physiological sensor for recording the patient's response to the neurostimulation therapy on an ambulatory basis over extended periods of time.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: February 5, 2019
    Assignees: Cyberonics, Inc., East Tennessee State University
    Inventors: Imad Libbus, Badri Amurthur, Bruce H. KenKnight, Jeffrey L. Ardell
  • Patent number: 10188856
    Abstract: An implantable device for providing electrical stimulation of cervical vagus nerves for treatment of chronic cardiac dysfunction is provided. A stimulation therapy lead includes helical electrodes configured to conform to an outer diameter of a cervical vagus nerve sheath, and a set of connector pins electrically connected to the helical electrodes. A neurostimulator includes an electrical receptacle into which the connector pins are securely and electrically coupled. The neurostimulator also includes a pulse generator configured to therapeutically stimulate the vagus nerve through the helical electrodes in alternating cycles of stimuli application and stimuli inhibition that are tuned to both efferently activate the heart's intrinsic nervous system and afferently activate the patient's central reflexes by triggering bi-directional action potentials.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: January 29, 2019
    Assignee: Cyberonics, Inc.
    Inventors: Imad Libbus, Badri Amurthur, Bruce H. KenKnight
  • Patent number: 10166391
    Abstract: Systems and methods are provided for delivering neurostimulation therapies to patients for treating chronic heart failure. A neural fulcrum zone is identified and ongoing neurostimulation therapy is delivered within the neural fulcrum zone. The implanted stimulation device includes a physiological sensor for monitoring the patient's response to the neurostimulation therapy on an ambulatory basis over extended periods of time and a control system for adjusting stimulation parameters to maintain stimulation in the neural fulcrum zone based on detected changes in the physiological response to stimulation.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: January 1, 2019
    Assignees: Cybertronics, Inc., East Tennessee State University
    Inventors: Imad Libbus, Badri Amurthur, Bruce H. KenKnight, Jeffrey L. Ardell
  • Publication number: 20180360392
    Abstract: Systems and methods of managing a plurality of patients undergoing titration using a management device. The method includes receiving, via a processor of a management device, a plurality of patient information from the plurality of patients, evaluating, via the processor of the management device, each patient based on patient information, determining, via the processor of the management device, a status of each patient, where the status is based on a progression of the titration based on titration assist parameters and determining, via the processor of the management device, a priority of each patient based on patient status. In some embodiments the method includes sorting that patients based on user input. In some embodiments, the plurality of patient information is received via remote communication with at least one of a programming device, an implantable medical device, or a home management device.
    Type: Application
    Filed: June 20, 2017
    Publication date: December 20, 2018
    Inventors: Scott Stubbs, Imad Libbus, Bruce H. KenKnight, Badri Amurthur
  • Publication number: 20180361158
    Abstract: Multi-modal stimulation therapy may be utilized in which two or more stimulation therapies having different stimulation parameters may be delivered to a single patient. This can preferentially stimulate different nerve fiber types and drive different functional responses in the target organs. The stimulation parameters that may vary between the different stimulation therapies include, for example, pulse frequency, pulse width, pulse amplitude, and duty cycle.
    Type: Application
    Filed: June 14, 2018
    Publication date: December 20, 2018
    Applicants: Cyberonics, Inc., East Tennessee State University
    Inventors: Imad Libbus, Badri Amurthur, Bruce H. KenKnight, Jeffrey L. Ardell, Gregory A. Ordway
  • Patent number: 10124170
    Abstract: A method of neurostimulation titration. The method includes setting titration parameters for an electrical signal delivered by an implantable medical device, initiating titration with the titration parameters and an aggressiveness profile, performing titration by increasing at least one of a current amplitude, a frequency, a pulse width or a duty cycle of the electrical signal until a threshold is reached or a side effect is detected, pausing the titration while waiting for commands from the patient or caregiver, and resuming the titration in response to receiving authorization from an external device.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: November 13, 2018
    Assignee: Cyberonics, Inc.
    Inventors: Scott Stubbs, Imad Libbus, Scott Mazar, Bruce H. KenKnight, Badri Amurthur
  • Publication number: 20180304080
    Abstract: An implantable neurostimulator-implemented method for managing tachyarrhythmias upon a patient's awakening from sleep through vagus nerve stimulation is provided. An implantable neurostimulator, including a pulse generator, is configured to deliver electrical therapeutic stimulation in a manner that results in creation and propagation (in both afferent and efferent directions) of action potentials within neuronal fibers comprising the cervical vagus nerve of a patient. Operating modes of the pulse generator are stored. An enhanced dose of the electrical therapeutic stimulation is parametrically defined and tuned to prevent initiation of or disrupt tachyarrhythmia upon the patient's awakening from a sleep state through at least one of continuously-cycling, intermittent and periodic ON-OFF cycles of electrical pulses. Other operating modes, including a maintenance dose and a restorative dose are defined.
    Type: Application
    Filed: June 22, 2018
    Publication date: October 25, 2018
    Applicant: CYBERONICS, INC.
    Inventors: Imad Libbus, Badri Amurthur, Bruce H. KenKnight
  • Publication number: 20180243566
    Abstract: Systems and methods are provided for delivering neurostimulation therapies to patients for treating chronic heart failure. A computer-implemented control system is operated to automatically identify a neural fulcrum zone based on a monitored patient physiological response. Ongoing neurostimulation therapy is delivered within the neural fulcrum zone.
    Type: Application
    Filed: April 20, 2018
    Publication date: August 30, 2018
    Applicants: Cyberonics, Inc., East Tennessee State University
    Inventors: Imad Libbus, Badri Amurthur, Bruce H. KenKnight, Jeffrey L. Ardell
  • Publication number: 20180200515
    Abstract: A method for managing bradycardia through vagus nerve stimulation is provided. An implantable neurostimulator configured to deliver electrical therapeutic stimulation in both afferent and efferent directions of a patient's cervical vagus nerve is provided. An operating mode is stored, which includes parametrically defining a maintenance dose of the electrical therapeutic stimulation tuned to restore cardiac autonomic balance through continuously-cycling, intermittent and periodic electrical pulses. The maintenance dose is delivered via a pulse generator through a pair of helical electrodes via an electrically coupled nerve stimulation therapy lead independent of cardiac cycle. The patient's physiology is monitored, and upon sensing a condition indicative of bradycardia, the delivery of the maintenance dose is suspended.
    Type: Application
    Filed: March 15, 2018
    Publication date: July 19, 2018
    Applicant: CYBERONICS, INC.
    Inventors: Imad Libbus, Badri Amurthur, Bruce H. KenKnight
  • Patent number: 10004903
    Abstract: An implantable neurostimulator-implemented method for managing tachyarrhythmias upon a patient's awakening from sleep through vagus nerve stimulation is provided. An implantable neurostimulator, including a pulse generator, is configured to deliver electrical therapeutic stimulation in a manner that results in creation and propagation (in both afferent and efferent directions) of action potentials within neuronal fibers comprising the cervical vagus nerve of a patient. Operating modes of the pulse generator are stored. An enhanced dose of the electrical therapeutic stimulation is parametrically defined and tuned to prevent initiation of or disrupt tachyarrhythmia upon the patient's awakening from a sleep state through at least one of continuously-cycling, intermittent and periodic ON-OFF cycles of electrical pulses. Other operating modes, including a maintenance dose and a restorative dose are defined.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: June 26, 2018
    Assignee: Cyberonics, Inc.
    Inventors: Imad Libbus, Badri Amurthur, Bruce H. KenKnight
  • Patent number: 9999773
    Abstract: Multi-modal stimulation therapy may be utilized in which two or more stimulation therapies having different stimulation parameters may be delivered to a single patient. This can preferentially stimulate different nerve fiber types and drive different functional responses in the target organs. The stimulation parameters that may vary between the different stimulation therapies include, for example, pulse frequency, pulse width, pulse amplitude, and duty cycle.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: June 19, 2018
    Assignees: Cyberonics, Inc., East Tennessee State University
    Inventors: Imad Libbus, Badri Amurthur, Bruce H. KenKnight, Jeffrey L. Ardell, Gregory A. Ordway
  • Patent number: RE46926
    Abstract: An adherent device to monitor a patient for an extended period comprises a breathable tape. The breathable tape comprises a porous material with an adhesive coating to adhere the breathable tape to a skin of the patient. At least one electrode is affixed to the breathable tape and capable of electrically coupling to a skin of the patient. A printed circuit board is connected to the breathable tape to support the printed circuit board with the breathable tape when the tape is adhered to the patient. Electronic components electrically are connected to the printed circuit board and coupled to the at least one electrode to measure physiologic signals of the patient. A breathable cover and/or an electronics housing is disposed over the circuit board and electronic components and connected to at least one of the electronics components, the printed circuit board or the breathable tape.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: July 3, 2018
    Assignee: Medtronic Monitoring, Inc.
    Inventors: Mark J. Bly, Badri Amurthur, Kristofer J. James, Imad Libbus, Yatheendhar D. Manicka, Scott T. Mazar, Jerry S. Wang