Patents by Inventor Bahgat Sammakia

Bahgat Sammakia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10308856
    Abstract: A class of paste materials for thermal, and mechanical bonding, and in some cases electrical interconnection, of two solid surfaces includes particles and an organic vehicle which is partially or completely removed during processing. The paste includes hybrids of inorganic materials for meeting the thermal, electrical and mechanical bonding functionality requirements and organic materials for meeting the process, application and protection requirements. The inorganic materials include high thermal and optionally electrical conductivity materials in forms from nanoparticles to micro-powders. The organic materials may include small molecules, surfactant, oligomers, and polymers.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: June 4, 2019
    Assignee: THE RESEARCH FOUNDATION FOR THE STATE UNIVERSITY OF NEW YORK
    Inventors: Hao Wang, Bahgat Sammakia
  • Patent number: 10064283
    Abstract: A method for forming a film on a conductive substrate, comprising immersing a substrate having a conductive portion in a solution comprising a metal ion ceramic precursor for the film and a peroxide; applying a voltage potential to the conductive portion with respect to a counter electrode in the solution, sufficient to protect the conductive portion from corrosion by the solution, and drive formation of a film on the substrate, controlling a pH of the solution while limiting a production of hydrogen by electrolysis of the solution proximate to the conductive portion; and maintaining the voltage potential for a sufficient duration to produce a film on the conductive portion. An electrode may be formed over the film to produce an electrical device. The film may be, for example, insulating, dielectric, resistive, semiconductive, magnetic, or ferromagnetic.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: August 28, 2018
    Assignee: The Research Foundation for the State University of New York
    Inventors: Junghyun Cho, Bahgat Sammakia, Mark D. Poliks, Roy Magnuson, Biplab Kumar Roy
  • Publication number: 20180228060
    Abstract: A method of controlling a data center having a cold air cooling system, and at least one containment structure, comprising: determining a minimum performance constraint; determining optimum states of the cold air cooling system, a controlled leakage of air across the containment structure between a hot region and a cold air region, and information technology equipment for performing tasks to meet the minimum performance constraint, to minimize operating cost; and generating control signals to the cold air cooling system, a controlled leakage device, and the information technology equipment in accordance with the determined optimum states.
    Type: Application
    Filed: January 24, 2018
    Publication date: August 9, 2018
    Inventors: Husam Alissa, Kourosh Nemati, Bahgat Sammakia, Kanad Ghose
  • Publication number: 20170013721
    Abstract: A method for forming a film on a conductive substrate, comprising immersing a substrate having a conductive portion in a solution comprising a metal ion ceramic precursor for the film and a peroxide; applying a voltage potential to the conductive portion with respect to a counter electrode in the solution, sufficient to protect the conductive portion from corrosion by the solution, and drive formation of a film on the substrate, controlling a pH of the solution while limiting a production of hydrogen by electrolysis of the solution proximate to the conductive portion; and maintaining the voltage potential for a sufficient duration to produce a film on the conductive portion. An electrode may be formed over the film to produce an electrical device. The film may be, for example, insulating, dielectric, resistive, semiconductive, magnetic, or ferromagnetic.
    Type: Application
    Filed: November 10, 2014
    Publication date: January 12, 2017
    Inventors: Junghyun Cho, Bahgat Sammakia, Mark D. Poliks, Roy Magnuson, Biplab Kumar Roy
  • Publication number: 20160135303
    Abstract: A method for forming a film on a conductive substrate, comprising immersing a substrate having a conductive portion in a solution comprising a metal ion ceramic precursor for the film and a peroxide; applying a voltage potential to the conductive portion with respect to a counter electrode in the solution, sufficient to protect the conductive portion from corrosion by the solution, and drive formation of a film on the substrate, controlling a pH of the solution while limiting a production of hydrogen by electrolysis of the solution proximate to the conductive portion; and maintaining the voltage potential for a sufficient duration to produce a film on the conductive portion. An electrode may be formed over the film to produce an electrical device. The film may be, for example, insulating, dielectric, resistive, semiconductive, magnetic, or ferromagnetic.
    Type: Application
    Filed: November 10, 2014
    Publication date: May 12, 2016
    Inventors: Junghyun Cho, Bahgat Sammakia, Mark D. Poliks, Roy Magnuson, Biplab Kumar Roy
  • Patent number: 9017808
    Abstract: A method of manufacturing a thermal interface material, comprising providing a sheet comprising nano-scale fibers, the sheet having at least one exposed surface; and stabilizing the fibers with a stabilizing material disposed in at least a portion of a void space between the fibers in the sheet. The fibers may be CNT's or metallic nano-wires. Stabilizing may include infiltrating the fibers with a polymerizable material. The polymerizable material may be mixed with nano- or micro-particles. The composite system may include two films, with the fibers in between, to create a sandwich. Each capping film may include two sub films: a palladium film closer to the stabilizing material to improve adhesion; and a nano-particle film for contact with a device to be cooled or a heat sink.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: April 28, 2015
    Assignee: The Research Foundation for The State University of New York
    Inventors: Hao Wang, Bahgat Sammakia, Yayong Liu, Kaikun Yang
  • Patent number: 8882983
    Abstract: A method for forming a film on a conductive substrate, comprising immersing a substrate having a conductive portion in a solution comprising a metal ion ceramic precursor for the film and a peroxide; applying a voltage potential to the conductive portion with respect to a counter electrode in the solution, sufficient to protect the conductive portion from corrosion by the solution, and drive formation of a film on the substrate, controlling a pH of the solution while limiting a production of hydrogen by electrolysis of the solution proximate to the conductive portion; and maintaining the voltage potential for a sufficient duration to produce a film on the conductive portion. An electrode may be formed over the film to produce an electrical device. The film may be, for example, insulating, dielectric, resistive, semiconductive, magnetic, or ferromagnetic.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: November 11, 2014
    Assignee: The Research Foundation for The State University of New York
    Inventors: Junghyun Cho, Bahgat Sammakia, Mark D. Poliks, Roy Magnuson, Biplab Kumar Roy
  • Patent number: 8685529
    Abstract: A method for coating for a substrate, comprising applying an underlayer of a self assembling monolayer well ordered array of long chain molecules on the substrate; and applying a top layer, over the underlayer, wherein the self-assembling monolayer well ordered array serves as a molecular template organizing formation of said top layer, comprising at least one of a thermally-resistant polymer layer over said self assembling monolayer selected from the group consisting of epoxies, and phosphorus-based polyimides; and a metal oxide, metal nitride, or a ceramic. The self assembling monolayer may be selectively applied to a portion of the substrate, leaving an uncoated region, and the top layer formed only over the areas of the substrate coated with the self-assembling monolayer, resulting in at least one region of the substrate which is not coated with the top layer.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: April 1, 2014
    Assignee: The Research Foundation for The State University of New York
    Inventors: Junghyun Cho, Scott Oliver, Wayne Jones, Bahgat Sammakia
  • Patent number: 8518304
    Abstract: The present invention features additions of nanostructures to interconnect conductor particles to: (1) reduce thermal interface resistance by using thermal interposers that have high thermal conductivity nanostructures at their surfaces; (2) improve the anisotropic conductive adhesive interconnection conductivity with microcircuit contact pads; and (3) allow lower compression forces to be applied during the microcircuit fabrication processes which then results in reduced deflection or circuit damage. When pressure is applied during fabrication to spread and compress anisotropic conductive adhesive and the matrix of interconnect particles and circuit conductors, the nano-structures mesh and compress into a more uniform connection than current technology provides, thereby eliminating voids, moisture and other contaminants, increasing the contact surfaces for better electrical and thermal conduction.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: August 27, 2013
    Assignee: The Research Foundation of State University of New York
    Inventors: Bahgat Sammakia, Wayne E. Jones, Jr., Ganesh Subbarayan
  • Patent number: 8277112
    Abstract: The invention provides devices and methods for increasing the degree of mixing of fluids, including under conditions of laminar flow and turbulent flow. In one embodiment, mixing of fluids using the invention's devices and methods is increased by splitting the flow of at least one of the fluids into two or more inlet channels. This is optionally followed by further splitting and merging (e.g., using one or more split and merge (SAM) mixer) the fluids.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: October 2, 2012
    Assignee: The Research Foundation of State University of New York
    Inventors: Siddharth Bhopte, Bruce Murray, Bahgat Sammakia
  • Patent number: 8173260
    Abstract: The present invention features additions of nano-structures to interconnect conductor fine particles (spheres) to: (1) reduce thermal interface resistance by using thermal interposers that have high thermal conductivity nano-structures at their surfaces; (2) improve the anisotropic conductive adhesive interconnection conductivity with microcircuit contact pads; and (3) allow lower compression forces to be applied during the microcircuit fabrication processes which then results in reduced deflection or circuit damage. When pressure is applied during fabrication to spread and compress anisotropic conductive adhesive and the matrix of interconnect particles and circuit conductors, the nano-structures mesh and compress into a more uniform connection than current technology provides, thereby eliminating voids, moisture and other contaminants, increasing the contact surfaces for better electrical and thermal conduction.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: May 8, 2012
    Assignee: The Research Foundation of State University of New York
    Inventors: Bahgat Sammakia, Wayne E. Jones, Ganesh Subbarayan
  • Patent number: 8158201
    Abstract: A bi- or multi-layer coating is deposited upon a substrate using a low temperature process. The bi-layer is a lower layer of a SAM coating, which is overlaid with a hard coating. The hard coating can be made of materials such as: polymer, Si3N4, BN, TiN, Si02, Al203, Zr02, YSZ, and other ceramic materials, and the underlying, compliant, SAM coating can comprise substances containing long chain molecules that chemically bond to the substrate. This bi-layer provides both environmental and hermetical protection to electronic hardware and MEMS systems, without employing expensive packaging materials and processes. Multiple bi-layers may be combined to form multi-layer coatings. A protective polymer or other material may optionally be formed as an outside layer.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: April 17, 2012
    Assignee: The Research Foundation of State
    Inventors: Junghyun Cho, Scott Oliver, Wayne Jones, Bahgat Sammakia
  • Patent number: 8129001
    Abstract: A method of manufacturing a thermal interface material, comprising providing a sheet comprising nano-scale fibers, the sheet having at least one exposed surface; and stabilizing the fibers with a stabilizing material disposed in at least a portion of a void space between the fibers in the sheet. The fibers may be CNT's or metallic nano-wires. Stabilizing may include infiltrating the fibers with a polymerizable material. The polymerizable material may be mixed with nano- or micro-particles. The composite system may include two films, with the fibers in between, to create a sandwich. Each capping film may include two sub films: a palladium film closer to the stabilizing material to improve adhesion; and a nano-particle film for contact with a device to be cooled or a heat sink.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: March 6, 2012
    Assignee: The Research Foundation of State University of New York
    Inventors: Hao Howard Wang, Bahgat Sammakia, Yayong Liu, Kaikun Yang
  • Patent number: 7645512
    Abstract: The present invention features additions of nano-structures to interconnect conductor fine particles (spheres) to: (1) reduce thermal interface resistance by using thermal interposers that have high thermal conductivity nano-structures at their surfaces; (2) improve the anisotropic conductive adhesive interconnection conductivity with microcircuit contact pads; and (3) allow lower compression forces to be applied during the microcircuit fabrication processes which then results in reduced deflection or circuit damage. When pressure is applied during fabrication to spread and compress anisotropic conductive adhesive and the matrix of interconnect particles and circuit conductors, the nano-structures mesh and compress into a more uniform connection than current technology provides, thereby eliminating voids, moisture and other contaminants, increasing the contact surfaces for better electrical and thermal conduction.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: January 12, 2010
    Assignee: The Research Foundation of the State University of New York
    Inventors: Bahgat Sammakia, Wayne E. Jones, Jr., Ganesh Subbarayan
  • Publication number: 20090323463
    Abstract: The invention provides devices and methods for increasing the degree of mixing of fluids, including under conditions of laminar flow and turbulent flow. In one embodiment, mixing of fluids using the invention's devices and methods is increased by splitting the flow of at least one of the fluids into two or more inlet channels. This is optionally followed by further splitting and merging (e.g., using one or more split and merge (SAM) mixer) the fluids.
    Type: Application
    Filed: May 27, 2009
    Publication date: December 31, 2009
    Inventors: Siddharth Bhopte, Bruce Murray, Bahgat Sammakia
  • Publication number: 20090301770
    Abstract: A method for forming a film on a conductive substrate, comprising immersing a substrate having a conductive portion in a solution comprising a metal ion ceramic precursor for the film and a peroxide; applying a voltage potential to the conductive portion with respect to a counter electrode in the solution, sufficient to protect the conductive portion from corrosion by the solution, and drive formation of a film on the substrate, controlling a pH of the solution while limiting a production of hydrogen by electrolysis of the solution proximate to the conductive portion; and maintaining the voltage potential for a sufficient duration to produce a film on the conductive portion. An electrode may be formed over the film to produce an electrical device. The film may be, for example, insulating, dielectric, resistive, semiconductive, magnetic, or ferromagnetic.
    Type: Application
    Filed: June 10, 2009
    Publication date: December 10, 2009
    Inventors: Junghyun Cho, Bahgat Sammakia, Mark D. Poliks, Roy Magnuson, Biplab Kumar Roy
  • Publication number: 20090269604
    Abstract: A method of manufacturing a thermal interface material, comprising providing a sheet comprising nano-scale fibers, the sheet having at least one exposed surface; and stabilizing the fibers with a stabilizing material disposed in at least a portion of a void space between the fibers in the sheet. The fibers may be CNT's or metallic nano-wires. Stabilizing may include infiltrating the fibers with a polymerizable material. The polymerizable material may be mixed with nano- or micro-particles. The composite system may include two films, with the fibers in between, to create a sandwich. Each capping film may include two sub films: a palladium film closer to the stabilizing material to improve adhesion; and a nano-particle film for contact with a device to be cooled or a heat sink.
    Type: Application
    Filed: March 12, 2009
    Publication date: October 29, 2009
    Applicant: The Research Foundation of State University of New York
    Inventors: Hao Wang, Bahgat Sammakia, Yayong Liu, Kaikun Yang
  • Publication number: 20090232991
    Abstract: A method of manufacturing a thermal interface material, comprising providing a sheet comprising nano-scale fibers, the sheet having at least one exposed surface; and stabilizing the fibers with a stabilizing material disposed in at least a portion of a void space between the fibers in the sheet. The fibers may be CNT's or metallic nano-wires. Stabilizing may include infiltrating the fibers with a polymerizable material. The polymerizable material may be mixed with nano- or micro-particles. The composite system may include two films, with the fibers in between, to create a sandwich. Each capping film may include two sub films: a palladium film closer to the stabilizing material to improve adhesion; and a nano-particle film for contact with a device to be cooled or a heat sink.
    Type: Application
    Filed: March 12, 2009
    Publication date: September 17, 2009
    Applicant: The Research Foundation of State University of New York
    Inventors: Hao Howard Wang, Bahgat Sammakia, Yayong Liu, Kaikun Yang
  • Patent number: 7282254
    Abstract: A bi- or multi-layer coating is deposited upon a substrate using a low temperature process. The bi-layer is a lower layer of a SAM coating, which is overlaid with a hard coating. The hard coating can be made of materials such as: polymer, Si3N4, BN, TiN, SiO2, Al2O3, ZrO2, YSZ, and other ceramic materials, and the underlying, compliant, SAM coating can comprise substances containing long chain molecules that chemically bond to the substrate. This bi-layer provides both environmental and hermetical protection to electronic hardware and MEMS systems, without employing expensive packaging materials and processes. Multiple bi-layers may be combined to form multi-layer coatings. A protective polymer or other material may optionally be formed as an outside layer.
    Type: Grant
    Filed: February 23, 2004
    Date of Patent: October 16, 2007
    Assignee: The Research Foundation of State University of New York
    Inventors: Junghyun Cho, Scott Oliver, Wayne Jones, Bahgat Sammakia