Patents by Inventor Bainian Qian

Bainian Qian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10875144
    Abstract: The present invention provides methods of CMP polishing a metal surface, such as a copper or tungsten containing metal surface in a semiconductor wafer, the methods comprising CMP polishing the substrate with a CMP polishing pad that has a top polishing surface in a polishing layer which is the reaction product of an isocyanate terminated urethane prepolymer and a curative component comprising a polyol curative having a number average molecular weight of 6000 to 15,000, and having an average of 5 to 7 hydroxyl groups per molecule and a polyfunctional aromatic amine curative, wherein the polishing layer would if unfilled have a water uptake of 4 to 8 wt. % after one week of soaking in deionized (DI) water at room temperature. The methods form coplanar metal and dielectric or oxide layer surfaces with low defectivity and a minimized degree of dishing.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: December 29, 2020
    Assignee: ROHM AND HAAS ELECTRONIC MATERIALS CMP HOLDINGS, I
    Inventors: Bainian Qian, Fengji Yeh, Te-Chun Wang, Sheng-Huan Tseng, Kevin Wen-Huan Tung, Marty W. DeGroot
  • Patent number: 10722999
    Abstract: A chemical mechanical polishing pad for polishing a semiconductor substrate is provided containing a polishing layer that comprises a polyurethane reaction product of a reaction mixture comprising (i) one or more diisocyanate, polyisocyanate or polyisocyanate prepolymer, (ii) from 40 to 85 wt. % based on the total weight of (i) and (ii) of one or more blocked diisocyanate, polyisocyanate or polyisocyanate prepolymer which contains a blocking agent and has a deblocking temperature of from 80 to 160° C., and (iii) one or more aromatic diamine curative. The reaction mixture has a gel time at 80° C. and a pressure of 101 kPa of from 2 to 15 minutes; the polyurethane reaction product has a residual blocking agent content of 2 wt. % or less; and the polishing layer exhibits a density of from 0.6 to 1.2 g/cm3.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: July 28, 2020
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Nitta Haas Inc., Dow Global Technologies LLC
    Inventors: Thomas P. Willumstad, Bainian Qian, Rui Xie, Kenjiro Ogata, George C. Jacob, Marty W. DeGroot
  • Patent number: 10625393
    Abstract: The present invention provides a chemical mechanical (CMP) polishing pad for planarizing at least one of semiconductor, optical and magnetic substrates comprising a polishing layer that has a geometric center, and in the polishing layer a plurality of offset circumferential grooves, such as circular or polygonal grooves, which have a plurality of geometric centers and not a common geometric center. In the polishing layer of the present invention, each circumferential groove is set apart a pitch distance from its nearest or adjacent circumferential groove or grooves; for example, the pitch increases on the half or hemisphere of the polishing layer that is farthest from the geometric center of its innermost circumferential groove and decreases on the half of the polishing layer nearest that geometric center. Preferably, the polishing layer contains an outermost circumferential groove that is complete and continuous.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: April 21, 2020
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Bainian Qian, Teresa Brugarolas Brufau, Julia Kozhukh
  • Patent number: 10464187
    Abstract: A CMP polishing pad for polishing a semiconductor substrate is provided containing a polishing layer that comprises a polyurethane reaction product of a reaction mixture comprising a (i) curative of from 15 to 30 wt. % of an amine initiated polyol having an average of from 3 to less than 5 hydroxyl groups and a number average molecular weight of 150 to 400, and from 70 to 85 wt. % of an aromatic diamine and a (ii) polyisocyanate prepolymer having a number average molecular weight of from 600 to 5,000 and having an unreacted isocyanate content ranging from 6.5 to 11%. The CMP polishing pad has a tunable tan-delta peak temperature at from 50 to 80° C. which has a value of from 0.2 to 0.8 at the tan-delta peak temperature and is useful for polishing a variety of substrates.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: November 5, 2019
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Bainian Qian, Kancharla-Arun K. Reddy, George C. Jacob, Marty W. DeGroot
  • Publication number: 20190308294
    Abstract: A chemical mechanical polishing pad is provided containing a polishing layer having a polishing surface, wherein the polishing layer comprises a reaction product of ingredients, including: an isocyanate terminated urethane prepolymer; and, a curative system, containing a high molecular weight polyol curative; and, a difunctional curative.
    Type: Application
    Filed: May 17, 2019
    Publication date: October 10, 2019
    Inventors: Bainian Qian, Marty W. DeGroot
  • Patent number: 10391606
    Abstract: The present invention provides a chemical mechanical (CMP) polishing pad for polishing three dimensional semiconductor or memory substrates comprising a polishing layer of a polyurethane reaction product of a thermosetting reaction mixture of a curative of 4,4?-methylenebis(3-chloro-2,6-diethylaniline) (MCDEA) or mixtures of MCDEA and 4,4?-methylene-bis-o-(2-chloroaniline) (MbOCA), and a polyisocyanate prepolymer formed from one or two aromatic diisocyanates, such as toluene diisocyanate (TDI), or a mixture of an aromatic diisocyanate and an alicyclic diisocyanate, and a polyol of polytetramethylene ether glycol (PTMEG), polypropylene glycol (PPG), or a polyol blend of PTMEG and PPG and having an unreacted isocyanate (NCO) concentration of from 8.6 to 11 wt. %. The polyurethane in the polishing layer has a Shore D hardness according to ASTM D2240-15 (2015) of from 60 to 90, a shear storage modulus (G?) at 65° C.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: August 27, 2019
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: Jonathan G. Weis, Nan-Rong Chiou, George C. Jacob, Bainian Qian
  • Publication number: 20190168356
    Abstract: A CMP polishing pad for polishing a semiconductor substrate is provided containing a polishing layer that comprises a polyurethane reaction product of a reaction mixture comprising a (i) curative of from 15 to 30 wt. % of an amine initiated polyol having an average of from 3 to less than 5 hydroxyl groups and a number average molecular weight of 150 to 400, and from 70 to 85 wt. % of an aromatic diamine and a (ii) polyisocyanate prepolymer having a number average molecular weight of from 600 to 5,000 and having an unreacted isocyanate content ranging from 6.5 to 11%. The CMP polishing pad has a tunable tan-delta peak temperature at from 50 to 80° C. which has a value of from 0.2 to 0.8 at the tan-delta peak temperature and is useful for polishing a variety of substrates.
    Type: Application
    Filed: December 1, 2017
    Publication date: June 6, 2019
    Inventors: Bainian Qian, Kancharla-Arun K. Reddy, George C. Jacob, Marty W. DeGroot
  • Publication number: 20180361531
    Abstract: The present invention provides methods of CMP polishing a metal surface, such as a copper or tungsten containing metal surface in a semiconductor wafer, the methods comprising CMP polishing the substrate with a CMP polishing pad that has a top polishing surface in a polishing layer which is the reaction product of an isocyanate terminated urethane prepolymer and a curative component comprising a polyol curative having a number average molecular weight of 6000 to 15,000, and having an average of 5 to 7 hydroxyl groups per molecule and a polyfunctional aromatic amine curative, wherein the polishing layer would if unfilled have a water to uptake of 4 to 8 wt. % after one week of soaking in deionized (DI) water at room temperature. The methods form coplanar metal and dielectric or oxide layer surfaces with low defectivity and a minimized degree of dishing.
    Type: Application
    Filed: August 8, 2018
    Publication date: December 20, 2018
    Inventors: Bainian Qian, Fengji Yeh, Te-Chun Wang, Sheng-Huan Tseng, Kevin Wen-Huan Tung, Marty W. DeGroot
  • Publication number: 20180354094
    Abstract: The present invention provides a chemical mechanical (CMP) polishing pad for planarizing at least one of semiconductor, optical and magnetic substrates comprising a polishing layer that has a geometric center, and in the polishing layer a plurality of offset circumferential grooves, such as circular or polygonal grooves, which have a plurality of geometric centers and not a common geometric center. In the polishing layer of the present invention, each circumferential groove is set apart a pitch distance from its nearest or adjacent circumferential groove or grooves; for example, the pitch increases on the half or hemisphere of the polishing layer that is farthest from the geometric center of its innermost circumferential groove and decreases on the half of the polishing layer nearest that geometric center. Preferably, the polishing layer contains an outermost circumferential groove that is complete and continuous.
    Type: Application
    Filed: June 8, 2017
    Publication date: December 13, 2018
    Inventors: Bainian Qian, Teresa Brugarolas Brufau, Julia Kozhukh
  • Publication number: 20180345448
    Abstract: The present invention provides a chemical mechanical (CMP) polishing pad for polishing three dimensional semiconductor or memory substrates comprising a polishing layer of a polyurethane reaction product of a thermosetting reaction mixture of a curative of 4,4?-methylenebis(3-chloro-2,6-diethylaniline) (MCDEA) or mixtures of MCDEA and 4,4?-methylene-bis-o-(2-chloroaniline) (MbOCA), and a polyisocyanate prepolymer formed from one or two aromatic diisocyanates, such as toluene diisocyanate (TDI), or a mixture of an aromatic diisocyanate and an alicyclic diisocyanate, and a polyol of polytetramethylene ether glycol (PTMEG), polypropylene glycol (PPG), or a polyol blend of PTMEG and PPG and having an unreacted isocyanate (NCO) concentration of from 8.6 to 11 wt. %. The polyurethane in the polishing layer has a Shore D hardness according to ASTM D2240-15 (2015) of from 60 to 90, a shear storage modulus (G?) at 65° C.
    Type: Application
    Filed: June 6, 2017
    Publication date: December 6, 2018
    Inventors: Jonathan G. Weis, Nan-Rong Chiou, George C. Jacob, Bainian Qian
  • Publication number: 20180345449
    Abstract: The present invention provides a chemical mechanical (CMP) polishing pad for polishing three dimensional semiconductor or memory substrates comprising a polishing layer of a polyurethane reaction product of a thermosetting reaction mixture of a curative of 4,4?-methylenebis(3-chloro-2,6-diethylaniline) (MCDEA) or mixtures of MCDEA and 4,4?-methylene-bis-o-(2-chloroaniline) (MbOCA), and a polyisocyanate prepolymer formed from one or two aromatic diisocyanates, such as toluene diisocyanate (TDI), or a mixture of an aromatic diisocyanate and an alicyclic diisocyanate, and a polyol of polytetramethylene ether glycol (PTMEG), polypropylene glycol (PPG), or a polyol blend of PTMEG and PPG and having an unreacted isocyanate (NCO) concentration of from 8.6 to 11 wt. %. The polyurethane in the polishing layer has a Shore D hardness according to ASTM D2240-15 (2015) of from 50 to 90, a shear storage modulus (G?) at 65° C.
    Type: Application
    Filed: March 19, 2018
    Publication date: December 6, 2018
    Inventors: Jonathan G. Weis, Nan-Rong Chiou, George C. Jacob, Bainian Qian
  • Patent number: 10144115
    Abstract: A method of forming a chemical mechanical polishing pad polishing layer is provided, including: providing a mold having a base with a negative of a groove pattern; providing a poly side (P) liquid component; providing an iso side (I) liquid component; providing a pressurized gas; providing an axial mixing device; introducing the poly side (P) liquid component, the iso side (I) liquid component and the pressurized gas to the axial mixing device to form a combination; discharging the combination from the axial mixing device at a velocity of 5 to 1,000 m/sec toward the base; allowing the combination to solidify into a cake; deriving the chemical mechanical polishing pad polishing layer from the cake; wherein the chemical mechanical polishing pad polishing layer has a polishing surface with the groove pattern formed into the polishing surface; and wherein the polishing surface is adapted for polishing a substrate.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: December 4, 2018
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: David Michael Veneziale, Bainian Qian, Teresa Brugarolas Brufau, Julia Kozhukh, Yuhua Tong, Jeffrey B. Miller, Diego Lugo, George C. Jacob, Marty W. DeGroot, Andrew Wank, Fengji Yeh
  • Publication number: 20180311792
    Abstract: The present invention provides methods of manufacturing a chemical mechanical polishing (CMP polishing) layer for polishing substrates, such as semiconductor wafers comprising providing a composition of a plurality of liquid-filled microelements having a polymeric shell; classifying the composition via centrifugal air classification to remove fines and coarse particles and to produce liquid-filled microelements having a density of 800 to 1500 g/liter; and, forming the CMP polishing layer by (i) converting the classified liquid-filled microelements into gas-filled microelements by heating them, then mixing them with a liquid polymer matrix forming material and casting or molding the resulting mixture to form a polymeric pad matrix, or (ii) combining the classified liquid-filled microelements directly with the liquid polymer matrix forming material, and casting or molding.
    Type: Application
    Filed: May 1, 2017
    Publication date: November 1, 2018
    Inventors: Bainian Qian, George C. Jacob, Andrew Wank, David Shidner, Kancharla-Arun K. Reddy, Donna Marie Alden, Marty W. DeGroot
  • Patent number: 10105825
    Abstract: A method of forming a chemical mechanical polishing pad polishing layer is provided, including: providing a mold having a base with a negative of a groove pattern; providing a poly side (P) liquid component; providing an iso side (I) liquid component; providing a pressurized gas; providing an axial mixing device; introducing the poly side (P) liquid component, the iso side (I) liquid component and the pressurized gas to the axial mixing device to form a combination; discharging the combination from the axial mixing device at a velocity of 10 to 300 m/sec toward the base; allowing the combination to solidify into a cake; deriving the chemical mechanical polishing pad polishing layer from the cake; wherein the chemical mechanical polishing pad polishing layer has a polishing surface with the groove pattern formed into the polishing surface; and wherein the polishing surface is adapted for polishing a substrate.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: October 23, 2018
    Assignees: Rohm and Haas Electronics Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: David Michael Veneziale, Bainian Qian, Teresa Brugarolas Brufau, Julia Kozhukh, Yuhua Tong, Jeffrey B. Miller, Diego Lugo, George C. Jacob, Marty W. DeGroot, Andrew Wank, Fengji Yeh
  • Patent number: 10092998
    Abstract: A method of forming a chemical mechanical polishing pad composite polishing layer is provided, including: providing a first polishing layer component of a first continuous non-fugitive polymeric phase having a plurality of periodic recesses; discharging a combination toward the first polishing layer component at a velocity of 5 to 1,000 m/sec, filling the plurality of periodic recesses with the combination; allowing the combination to solidify in the plurality of periodic recesses forming a second non-fugitive polymeric phase giving a composite structure; and, deriving the chemical mechanical polishing pad composite polishing layer from the composite structure, wherein the chemical mechanical polishing pad composite polishing layer has a polishing surface on the polishing side of the first polishing layer component; and wherein the polishing surface is adapted for polishing a substrate.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: October 9, 2018
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: Bainian Qian, Teresa Brugarolas Brufau, Julia Kozhukh, David Michael Veneziale, Yuhua Tong, Diego Lugo, George C. Jacob, Jeffrey B. Miller, Tony Quan Tran, Marc R. Stack, Andrew Wank, Jeffrey James Hendron
  • Publication number: 20180281149
    Abstract: The present invention provides methods of CMP polishing a metal surface, such as a copper or tungsten containing metal surface in a semiconductor wafer, the methods comprising CMP polishing the substrate with a CMP polishing pad that has a top polishing surface in a polishing layer which is the reaction product of an isocyanate terminated urethane prepolymer and a curative component comprising a polyol curative having a number average molecular weight of 6000 to 15,000, and having an average of 5 to 7 hydroxyl groups per molecule and a polyfunctional aromatic amine curative, wherein the polishing layer would if unfilled have a water uptake of 4 to 8 wt. % after one week of soaking in deionized (DI) water at room temperature. The methods form coplanar metal and dielectric or oxide layer surfaces with low defectivity and a minimized degree of dishing.
    Type: Application
    Filed: March 31, 2017
    Publication date: October 4, 2018
    Inventors: Bainian Qian, Fengji Yeh, Te-Chun Wang, Sheng-Huan Tseng, Kevin Wen-Huan Tung, Marty W. DeGroot
  • Patent number: 10011002
    Abstract: A method of forming a chemical mechanical polishing pad composite polishing layer is provided, including: providing a first polishing layer component of a first continuous non-fugitive polymeric phase having a plurality of periodic recesses; discharging a combination toward the first polishing layer component at a velocity of 10 to 300 msec, filling the plurality of periodic recesses with the combination; allowing the combination to solidify in the plurality of periodic recesses forming a second non-fugitive polymeric phase giving a composite structure; and, deriving the chemical mechanical polishing pad composite polishing layer from the composite structure, wherein the chemical mechanical polishing pad composite polishing layer has a polishing surface on the polishing side of the first polishing layer component; and wherein the polishing surface is adapted for polishing a substrate.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: July 3, 2018
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: Bainian Qian, Teresa Brugarolas Brufau, Julia Kozhukh, David Michael Veneziale, Yuhua Tong, Diego Lugo, George C. Jacob, Jeffrey B. Miller, Tony Quan Tran, Marc R. Stack, Andrew Wank, Jeffrey James Hendron
  • Publication number: 20170361421
    Abstract: A chemical mechanical polishing pad for polishing a semiconductor substrate is provided containing a polishing layer that comprises a polyurethane reaction product of a reaction mixture comprising (i) one or more diisocyanate, polyisocyanate or polyisocyanate prepolymer, (ii) from 40 to 85 wt. % based on the total weight of (i) and (ii) of one or more blocked diisocyanate, polyisocyanate or polyisocyanate prepolymer which contains a blocking agent and has a deblocking temperature of from 80 to 160° C., and (iii) one or more aromatic diamine curative. The reaction mixture has a gel time at 80° C. and a pressure of 101 kPa of from 2 to 15 minutes; the polyurethane reaction product has a residual blocking agent content of 2 wt. % or less; and the polishing layer exhibits a density of from 0.6 to 1.2 g/cm3.
    Type: Application
    Filed: June 17, 2016
    Publication date: December 21, 2017
    Inventors: Thomas P. Willumstad, Bainian Qian, Rui Xie, Kenjiro Ogata, George C. Jacob, Marty W. DeGroot
  • Patent number: 9776300
    Abstract: A chemical mechanical polishing pad is provided, comprising: a chemical mechanical polishing layer having a polishing surface; wherein the chemical mechanical polishing layer is formed by combining (a) a poly side (P) liquid component, comprising: an amine-carbon dioxide adduct; and, at least one of a polyol, a polyamine and a alcohol amine; and (b) an iso side (I) liquid component, comprising: polyfunctional isocyanate; wherein the chemical mechanical polishing layer has a porosity of ?10 vol %; wherein the chemical mechanical polishing layer has a Shore D hardness of <40; and, wherein the polishing surface is adapted for polishing a substrate. Methods of making and using the same are also provided.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: October 3, 2017
    Assignees: Rohm and Haas Electronic Materials CMP Holdings Inc., Dow Global Technologies LLC
    Inventors: Bainian Qian, Julia Kozhukh, Teresa Brugarolas Brufau, David Michael Veneziale, Yuhua Tong, Diego Lugo, Jeffrey B. Miller, George C. Jacob, Marty W. DeGroot, Tony Quan Tran, Marc R. Stack, Andrew Wank, Fengji Yeh
  • Patent number: 9731398
    Abstract: The polishing pad is for planarizing at least one of semiconductor, optical and magnetic substrates. The polishing pad includes a cast polyurethane polymeric material formed from a prepolymer reaction of H12MDI/TDI with polytetramethylene ether glycol to form an isocyanate-terminated reaction product. The isocyanate-terminated reaction product has 8.95 to 9.25 weight percent unreacted NCO and has an NH2 to NCO stoichiometric ratio of 102 to 109 percent. The isocyanate-terminated reaction product is cured with a 4,4?-methylenebis(2-chlororaniline) curative agent. The cast polyurethane polymeric material, as measured in a non-porous state, having a shear storage modulus, G? of 250 to 350 MPa as measured with a torsion fixture at 30° C. and 40° C. and a shear loss modulus, G? of 25 to 30 MPa as measured with a torsion fixture at 40° C. The polishing pad having a porosity of 20 to 50 percent by volume and a density of 0.60 to 0.95 g/cm3.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: August 15, 2017
    Assignees: Rohm and Haas Electronic Materials CMP Holding, Inc., Dow Global Technologies LLC
    Inventors: Bainian Qian, Raymond L. Lavoie, Jr., Marty W. DeGroot, Benson Lee