Patents by Inventor Bala Haran

Bala Haran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10741668
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to replacement metal gate structures and methods of manufacture. The structure includes at least one short channel device including a dielectric material, a workfunction metal, and a capping material, and a long channel device comprising the dielectric material, the workfunction metal and fluorine free gate conductor material.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: August 11, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Bala Haran, Ruilong Xie, Balaji Kannan, Katsunori Onishi, Vimal K. Kamineni
  • Patent number: 10658363
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a cut inside a replacement metal gate trench to mitigate n-p proximity effects and methods of manufacture. The structure described herein includes: a first device; a second device, adjacent to the first device; a dielectric material, of the first device and the second device, including a cut within a trench between the first device and the second device; and a common gate electrode shared with the first device and the second device, the common gate electrode provided over the dielectric material and contacting underlying material within the cut.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: May 19, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Balaji Kannan, Ayse M. Ozbek, Tao Chu, Bala Haran, Vishal Chhabra, Katsunori Onishi, Guowei Xu
  • Patent number: 10566328
    Abstract: One illustrative integrated circuit product disclosed herein includes a plurality of FinFET transistor devices, a plurality of fins, each of the fins having an upper surface, and an elevated isolation structure having an upper surface that is positioned at a level that is above a level of the upper surface of the fins. In this example, the product also includes a first gate structure having an axial length in a direction corresponding to the gate width direction of the transistor devices, wherein at least a portion of the axial length of the first gate structure is positioned above the upper surface of the elevated isolation structure.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: February 18, 2020
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Bala Haran, Christopher Sheraw, Mahender Kumar
  • Publication number: 20190393221
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a cut inside a replacement metal gate trench to mitigate n-p proximity effects and methods of manufacture. The structure described herein includes: a first device; a second device, adjacent to the first device; a dielectric material, of the first device and the second device, including a cut within a trench between the first device and the second device; and a common gate electrode shared with the first device and the second device, the common gate electrode provided over the dielectric material and contacting underlying material within the cut.
    Type: Application
    Filed: September 6, 2019
    Publication date: December 26, 2019
    Inventors: Balaji KANNAN, Ayse M. OZBEK, Tao CHU, Bala HARAN, Vishal CHHABRA, Katsunori ONISHI, Guowei XU
  • Patent number: 10461173
    Abstract: A method, apparatus, and manufacturing system are disclosed herein for a vertical field effect transistor (vFET) including top and bottom source/drain regions produced in one epitaxial growth process. The vFET may contain a semiconductor substrate; a fin above the semiconductor substrate; a structure on a middle portion of each sidewall of the fin, wherein a lower portion of each sidewall of the fin adjacent the semiconductor substrate and at least a top of the fin are uncovered by the structure; a top source/drain (S/D) region on at least the top of the fin; and a bottom S/D region on the lower portion of the fin and the semiconductor substrate. The structure on each sidewall may be a gate or a dummy gate, i.e., the vFET may be formed in a gate-first or a gate-last process.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: October 29, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ajey Poovannummoottil Jacob, Xuan Anh Tran, Hui Zang, Bala Haran, Suryanarayana Kalaga
  • Patent number: 10446550
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a cut inside a replacement metal gate trench to mitigate n-p proximity effects and methods of manufacture. The structure described herein includes: a first device; a second device, adjacent to the first device; a dielectric material, of the first device and the second device, including a cut within a trench between the first device and the second device; and a common gate electrode shared with the first device and the second device, the common gate electrode provided over the dielectric material and contacting underlying material within the cut.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: October 15, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Balaji Kannan, Ayse M. Ozbek, Tao Chu, Bala Haran, Vishal Chhabra, Katsunori Onishi, Guowei Xu
  • Publication number: 20190267371
    Abstract: One illustrative integrated circuit product disclosed herein includes a plurality of FinFET transistor devices, a plurality of fins, each of the fins having an upper surface, and an elevated isolation structure having an upper surface that is positioned at a level that is above a level of the upper surface of the fins. In this example, the product also includes a first gate structure having an axial length in a direction corresponding to the gate width direction of the transistor devices, wherein at least a portion of the axial length of the first gate structure is positioned above the upper surface of the elevated isolation structure.
    Type: Application
    Filed: February 26, 2018
    Publication date: August 29, 2019
    Inventors: Bala Haran, Christopher Sheraw, Mahender Kumar
  • Publication number: 20190115346
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a cut inside a replacement metal gate trench to mitigate n-p proximity effects and methods of manufacture. The structure described herein includes: a first device; a second device, adjacent to the first device; a dielectric material, of the first device and the second device, including a cut within a trench between the first device and the second device; and a common gate electrode shared with the first device and the second device, the common gate electrode provided over the dielectric material and contacting underlying material within the cut.
    Type: Application
    Filed: October 13, 2017
    Publication date: April 18, 2019
    Inventors: Balaji KANNAN, Ayse M. OZBEK, Tao CHU, Bala HARAN, Vishal CHHABRA, Katsunori ONISHI, Guowei XU
  • Publication number: 20190096679
    Abstract: Structures for a field-effect transistor and methods for forming a structure for a field-effect transistor. A gate cavity is formed in a dielectric layer that includes a bottom surface and a plurality sidewalls that extend to the bottom surface. A gate dielectric layer is formed at the sidewalls and the bottom surface of the gate cavity. A work function metal layer is deposited on the gate dielectric layer at the sidewalls and the bottom surface of the gate cavity. A fill metal layer is deposited inside the gate cavity after the work function metal layer is deposited. The fill metal layer is formed in direct contact with the work function metal layer.
    Type: Application
    Filed: September 22, 2017
    Publication date: March 28, 2019
    Inventors: Balaji Kannan, Bala Haran, Vimal K. Kamineni, Sungkee Han, Neal Makela, Suraj K. Patil, Pei Liu, Chih-Chiang Chang, Katsunori Onishi, Keith Kwong Hon Wong, Ruilong Xie, Chanro Park, Min Gyu Sung
  • Publication number: 20190027578
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to replacement metal gate structures and methods of manufacture. The structure includes at least one short channel device including a dielectric material, a workfunction metal, and a capping material, and a long channel device comprising the dielectric material, the workfunction metal and fluorine free gate conductor material.
    Type: Application
    Filed: July 19, 2017
    Publication date: January 24, 2019
    Inventors: Bala HARAN, Ruilong XIE, Balaji KANNAN, Katsunori ONISHI, Vimal K. KAMINENI
  • Publication number: 20180366553
    Abstract: A method that includes forming an isolation material adjacent a fin, forming a sidewall spacer around a portion of the fin and above the isolation material and forming first and second conductive source/drain contact structures adjacent the sidewall spacer, wherein each of the first and second conductive source/drain contact structures has a side surface positioned proximate the sidewall spacer. In this example, the method further includes, after forming the source/drain contact structures, removing at least a portion of the sidewall spacer and forming a gate cap that is positioned above a final gate structure for the device, wherein the gate cap contacts the source/drain contact structures, and wherein an air gap is formed at least on opposite sides of the final gate structure above an active region of the device.
    Type: Application
    Filed: June 15, 2017
    Publication date: December 20, 2018
    Inventors: Hui Zang, Bala Haran, Xuan Tran, Suryanarayana Kalaga
  • Publication number: 20040217334
    Abstract: The disclosure relates to an electroless or electrolytic process for treating metallic surfaces. The process employs a medium comprising at least one oxygen containing water soluble compound (e.g., stannates, molybdates, vanadates and hydrated cerium compounds) having a controlled and predetermined concentration, temperature and pH wherein the metallic surface is at least partially corroded or solubilized.
    Type: Application
    Filed: April 1, 2004
    Publication date: November 4, 2004
    Inventors: Robert L. Heimann, Branko Popov, Dragan Slavkov, Bala Haran
  • Patent number: 6753039
    Abstract: The disclosure relates to an electroless or electrolytic process for treating metallic surfaces. The process employs a medium comprising at least one oxygen containing water soluble compound (e.g., stannates, molybdates, vanadates and hydrated cerium compounds) having a controlled and predetermined concentration, temperature and pH wherein the metallic surface is at least partially corroded or solubilized.
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: June 22, 2004
    Assignee: Elisha Holding LLC
    Inventors: Robert L. Heimann, Branko Popov, Dragan Slavkov, Bala Haran
  • Publication number: 20030034095
    Abstract: The disclosure relates to an electroless or electrolytic process for treating metallic surfaces. The process employs a medium comprising at least one oxygen containing water soluble compound (e.g., stannates, molybdates, vanadates and hydrated cerium compounds) having a controlled and predetermined concentration, temperature and pH wherein the metallic surface is at least partially corroded or solubilized.
    Type: Application
    Filed: August 2, 2002
    Publication date: February 20, 2003
    Inventors: Robert L. Heimann, Branko Popov, Dragan Slavkov, Bala Haran