Patents by Inventor Barnett Rosenblum

Barnett Rosenblum has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11047004
    Abstract: The present disclosure provide systems, compositions, methods, reagents, kits and products for extending a nucleic acid that includes incorporating a nucleotide residue at a terminus of a nucleic acid using a polymerase enzyme and at least one nucleotide, wherein the at least one nucleotide includes a thiophosphate moiety, and wherein the at least one nucleotide is resistant to hydrolysis by phosphatase. In some embodiments, the nucleotide incorporation can be conducted in the presence of a phosphatase. In some embodiments, the nucleotide incorporation can be conducted in the presence of at least on chelation moiety that is configured to bind an orthophosphate moiety.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: June 29, 2021
    Assignee: Life Technologies Corporation
    Inventors: Steven Menchen, Theo Nikiforov, Barnett Rosenblum
  • Publication number: 20200231948
    Abstract: Provided herein are compositions and systems for use in polymerase-dependent, nucleotide transient-binding methods. The methods are useful for deducing the sequence of a template nucleic acid molecule and single nucleotide polymorphism (SNP) analyses. The methods rely on the fact that the polymerase transient-binding time for a complementary nucleotide is longer compared to that of a non-complementary nucleotide. The labeled nucleotides transiently-binds the polymerase in a template-dependent manner, but does not incorporate. The methods are conducted under any reaction condition that permits transient binding of a complementary or non-complementary nucleotide to a polymerase, and inhibits nucleotide incorporation.
    Type: Application
    Filed: March 20, 2020
    Publication date: July 23, 2020
    Inventors: Peter VANDER HORN, Cheng-Yao CHEN, Guobin LUO, Michael PREVITE, Jamshid TEMIROV, Theo NIKIFOROV, Zhaohui ZHOU, Hongye SUN, Yufang WANG, Stefanie Yukiko NISHIMURA, Hongyi WANG, Marian PERIS, Barnett ROSENBLUM, Michael PHELAN
  • Patent number: 10597642
    Abstract: Provided herein are compositions and systems for use in polymerase-dependent, nucleotide transient-binding methods. The methods are useful for deducing the sequence of a template nucleic acid molecule and single nucleotide polymorphism (SNP) analyses. The methods rely on the fact that the polymerase transient-binding time for a complementary nucleotide is longer compared to that of a non-complementary nucleotide. The labeled nucleotides transiently-binds the polymerase in a template-dependent manner, but does not incorporate. The methods are conducted under any reaction condition that permits transient binding of a complementary or non-complementary nucleotide to a polymerase, and inhibits nucleotide incorporation.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: March 24, 2020
    Assignee: Life Technologies Corporation
    Inventors: Peter Vander Horn, Cheng-Yao Chen, Guobin Luo, Michael Previte, Jamshid Temirov, Theo Nikiforov, Zhaohui Zhou, Hongye Sun, Yufang Wang, Stefanie Yukiko Nishimura, Hongyi Wang, Marian Peris, Barnett Rosenblum, Michael Phelan
  • Patent number: 10487357
    Abstract: In some embodiments, the disclosure relates generally to methods, as well as related, systems, compositions, kits and apparatuses, for nucleic acid analysis that involve the use of modified nucleotides, including terminator nucleotides and/or tagged nucleotides, in a template-dependent nucleotide incorporation reaction. In some embodiments, the nucleic acid analysis can be conducted at a single reaction site, or at a plurality of reaction sites in an array of reaction sites. Optionally, the array contains a plurality of reaction sites having about 1-100 million, or about 100-250 million, or about 200-500 million, or about 500-900 million, or more reaction sites. Optionally, each reaction site is in contact with, operatively coupled, or capacitively coupled to one or more sensors that are ion-sensitive FETs (isFETs) or chemically-sensitive FETs (chemFETs) sensors. Optionally, the reaction sites are in fluid communication with each other.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: November 26, 2019
    Assignees: Life Technologies Corporation, Life Technologies GmbH
    Inventors: Wolfgang Hinz, Steven Menchen, Ronald Graham, Peter Vander Horn, Earl Hubbell, Christian Woehler, Roman Rozhkov, Barnett Rosenblum
  • Publication number: 20190345549
    Abstract: The present disclosure provide systems, compositions, methods, reagents, kits and products for extending a nucleic acid that includes incorporating a nucleotide residue at a terminus of a nucleic acid using a polymerase enzyme and at least one nucleotide, wherein the at least one nucleotide includes a thiophosphate moiety, and wherein the at least one nucleotide is resistant to hydrolysis by phosphatase. In some embodiments, the nucleotide incorporation can be conducted in the presence of a phosphatase. In some embodiments, the nucleotide incorporation can be conducted in the presence of at least on chelation moiety that is configured to bind an orthophosphate moiety.
    Type: Application
    Filed: May 23, 2019
    Publication date: November 14, 2019
    Inventors: Steven MENCHEN, Theo NIKIFOROV, Barnett ROSENBLUM
  • Patent number: 10344325
    Abstract: The present disclosure provide systems, compositions, methods, reagents, kits and products for extending a nucleic acid that includes incorporating a nucleotide residue at a terminus of a nucleic acid using a polymerase enzyme and at least one nucleotide, wherein the at least one nucleotide includes a thiophosphate moiety, and wherein the at least one nucleotide is resistant to hydrolysis by phosphatase. In some embodiments, the nucleotide incorporation can be conducted in the presence of a phosphatase. In some embodiments, the nucleotide incorporation can be conducted in the presence of at least on chelation moiety that is configured to bind an orthophosphate moiety.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: July 9, 2019
    Assignee: Life Technologies Corporation
    Inventors: Steven Menchen, Theo Nikiforov, Barnett Rosenblum
  • Patent number: 10336991
    Abstract: Provided herein are mutant DNA-dependent polymerases which are derived from, or otherwise related to, wild type RB69 DNA polymerase. These mutant polymerases are capable of selectively binding labeled nucleotides. These mutant polymerases are also capable of incorporating a variety of naturally occurring and modified nucleotides, including, for example, terminator nucleotides.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: July 2, 2019
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Marian Peris, Michael Phelan, Barnett Rosenblum, Stephen Hendricks
  • Publication number: 20180119217
    Abstract: In some embodiments, the disclosure relates generally to methods, as well as related, systems, compositions, kits and apparatuses, for nucleic acid analysis that involve the use of modified nucleotides, including terminator nucleotides and/or tagged nucleotides, in a template-dependent nucleotide incorporation reaction. In some embodiments, the nucleic acid analysis can be conducted at a single reaction site, or at a plurality of reaction sites in an array of reaction sites. Optionally, the array contains a plurality of reaction sites having about 1-100 million, or about 100-250 million, or about 200-500 million, or about 500-900 million, or more reaction sites. Optionally, each reaction site is in contact with, operatively coupled, or capacitively coupled to one or more sensors that are ion-sensitive FETs (isFETs) or chemically-sensitive FETs (chemFETs) sensors. Optionally, the reaction sites are in fluid communication with each other.
    Type: Application
    Filed: March 18, 2016
    Publication date: May 3, 2018
    Applicants: Life Technologies Corporation, Life Technologies GmbH
    Inventors: Wolfgang HINZ, Steven MENCHEN, Ronald GRAHAM, Peter VANDER HORN, Earl HUBBELL, Christian WOEHLER, Roman ROZHKOV, Barnett ROSENBLUM
  • Publication number: 20170369857
    Abstract: Provided herein are compositions and systems for use in polymerase-dependent, nucleotide transient-binding methods. The methods are useful for deducing the sequence of a template nucleic acid molecule and single nucleotide polymorphism (SNP) analyses. The methods rely on the fact that the polymerase transient-binding time for a complementary nucleotide is longer compared to that of a non-complementary nucleotide. The labeled nucleotides transiently-binds the polymerase in a template-dependent manner, but does not incorporate. The methods are conducted under any reaction condition that permits transient binding of a complementary or non-complementary nucleotide to a polymerase, and inhibits nucleotide incorporation.
    Type: Application
    Filed: August 30, 2017
    Publication date: December 28, 2017
    Inventors: Peter VANDER HORN, Cheng-Yao CHEN, Guobin LUO, Michael PREVITE, Jamshid TEMIROV, Theo NIKIFOROV, Zhaohui ZHOU, Hongye SUN, Yufang WANG, Stefanie Yukiko NISHIMURA, Hongyi WANG, Marian PERIS, Barnett ROSENBLUM, Michael PHELAN
  • Patent number: 9765310
    Abstract: Provided herein are compositions and systems for use in polymerase-dependent, nucleotide transient-binding methods. The methods are useful for deducing the sequence of a template nucleic acid molecule and single nucleotide polymorphism (SNP) analyses. The methods rely on the fact that the polymerase transient-binding time for a complementary nucleotide is longer compared to that of a non-complementary nucleotide. The labeled nucleotides transiently-binds the polymerase in a template-dependent manner, but does not incorporate. The methods are conducted under any reaction condition that permits transient binding of a complementary or non-complementary nucleotide to a polymerase, and inhibits nucleotide incorporation.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: September 19, 2017
    Assignee: Life Technologies Corporation
    Inventors: Peter Vander Horn, Cheng-Yao Chen, Guobin Luo, Michael Previte, Jamshid Temirov, Theo Nikiforov, Zhaohui Zhou, Hongye Sun, Yufang Wang, Stefanie Yukiko Nishimura, Hongyi Wang, Marian Peris, Barnett Rosenblum, Michael Phelan
  • Publication number: 20170175092
    Abstract: Provided herein are mutant DNA-dependent polymerases which are derived from, or otherwise related to, wild type RB69 DNA polymerase. These mutant polymerases are capable of selectively binding labeled nucleotides. These mutant polymerases are also capable of incorporating a variety of naturally occurring and modified nucleotides, including, for example, terminator nucleotides.
    Type: Application
    Filed: February 1, 2017
    Publication date: June 22, 2017
    Inventors: Marian PERIS, Michael PHELAN, Barnett ROSENBLUM, Stephen HENDRICKS
  • Patent number: 9593315
    Abstract: Provided herein are mutant DNA-dependent polymerases which are derived from, or otherwise related to, wild type RB69 DNA polymerase. These mutant polymerases are capable of selectively binding labeled nucleotides. These mutant polymerases are also capable of incorporating a variety of naturally occurring and modified nucleotides, including, for example, terminator nucleotides.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: March 14, 2017
    Assignee: Life Technologies Corporation
    Inventors: Marian Peris, Michael Phelan, Barnett Rosenblum, Stephen Hendricks
  • Publication number: 20160304844
    Abstract: Provided herein are mutant DNA-dependent polymerases which are derived from, or otherwise related to, wild type RB69 DNA polymerase. These mutant polymerases are capable of selectively binding labeled nucleotides. These mutant polymerases are also capable of incorporating a variety of naturally occurring and modified nucleotides, including, for example, terminator nucleotides.
    Type: Application
    Filed: July 1, 2016
    Publication date: October 20, 2016
    Inventors: Marian PERIS, Michael PHELAN, Barnett ROSENBLUM, Stephen HENDRICKS
  • Patent number: 9399767
    Abstract: Provided herein are mutant DNA-dependent polymerases which are derived from, or otherwise related to, wild type RB69 DNA polymerase. These mutant polymerases are capable of selectively binding labeled nucleotides. These mutant polymerases are also capable of incorporating a variety of naturally occurring and modified nucleotides, including, for example, terminator nucleotides.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: July 26, 2016
    Assignee: LIFT TECHNOLOGIES CORPORATION
    Inventors: Marian Peris, Michael Phelan, Barnett Rosenblum, Stephen Hendricks
  • Publication number: 20160208318
    Abstract: Provided herein are compositions and systems for use in polymerase-dependent, nucleotide transient-binding methods. The methods are useful for deducing the sequence of a template nucleic acid molecule and single nucleotide polymorphism (SNP) analyses. The methods rely on the fact that the polymerase transient-binding time for a complementary nucleotide is longer compared to that of a non-complementary nucleotide. The labeled nucleotides transiently-binds the polymerase in a template-dependent manner, but does not incorporate. The methods are conducted under any reaction condition that permits transient binding of a complementary or non-complementary nucleotide to a polymerase, and inhibits nucleotide incorporation.
    Type: Application
    Filed: January 8, 2016
    Publication date: July 21, 2016
    Inventors: Peter Vander Horn, Cheng-Yao Chen, Guobin Luo, Michael Previte, Jamshid Temirov, Theo Nikiforov, Zhaohui Zhou, Hongye Sun, Yufang Wang, Stefanie Yukiko Nishimura, Hongyi Wang, Marian Peris, Barnett Rosenblum, Michael Phelan
  • Patent number: 9255258
    Abstract: Provided herein are compositions and systems for use in polymerase-dependent, nucleotide transient-binding methods. The methods are useful for deducing the sequence of a template nucleic acid molecule and single nucleotide polymorphism (SNP) analyses. The methods rely on the fact that the polymerase transient-binding time for a complementary nucleotide is longer compared to that of a non-complementary nucleotide. The labeled nucleotides transiently-binds the polymerase in a template-dependent manner, but does not incorporate. The methods are conducted under any reaction condition that permits transient binding of a complementary or non-complementary nucleotide to a polymerase, and inhibits nucleotide incorporation.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: February 9, 2016
    Assignee: Life Technologies Corporation
    Inventors: Peter Vander Horn, Cheng-Yao Chen, Guobin Luo, Michael Previte, Jamshid Temirov, Theo Nikiforov, Zhaohui Zhou, Hongye Sun, Yufang Wang, Stefanie Yukiko Nishimura, Hongyi Wang, Marian Peris, Barnett Rosenblum, Michael Phelan
  • Patent number: 8975302
    Abstract: The disclosure relates to methods of making polymer particles, said methods including the steps of: making an aqueous gel reaction mixture; forming an emulsion having dispersed aqueous phase micelles of gel reaction mixture in a continuous phase; adding an initiator oil comprising at least one polymerization initiator to the continuous phase; and performing a polymerization reaction in the micelles. Further, the initiator oil is present in a volume % relative to a volume of the aqueous gel reaction mixture of between about 1 vol % to about 20 vol %. The disclosure also relates to methods of making nucleic acid polymer particles having the same method steps and wherein the aqueous gel reaction mixture includes a nucleic acid fragment, such as a primer.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: March 10, 2015
    Assignee: Life Technologies Corporation
    Inventors: David Light, Barnett Rosenblum
  • Patent number: 8835625
    Abstract: Disclosed, among other things, are compounds having the structure wherein X comprises a bond or a linker, LABEL comprises at least one detectable label, W1 taken alone is —H or —OH, W2 is —OH or a non-extendable moiety, W3 when taken alone is —H or when taken together with W1 is —CH2—O—, and W4 is OH, monophosphate, diphosphate, or triphosphate. Also disclosed are labeled polynucleotide compounds and methods of use thereof.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: September 16, 2014
    Assignee: Applied Biosystems, LLC
    Inventors: Barnett Rosenblum, Geun-sook Jeon, Shaheer Khan
  • Publication number: 20140234940
    Abstract: Provided herein are mutant DNA-dependent polymerases which are derived from, or otherwise related to, wild type RB69 DNA polymerase. These mutant polymerases are capable of selectively binding labeled nucleotides. These mutant polymerases are also capable of incorporating a variety of naturally occurring and modified nucleotides, including, for example, terminator nucleotides.
    Type: Application
    Filed: February 27, 2014
    Publication date: August 21, 2014
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Marian PERIS, Michael PHELAN, Barnett ROSENBLUM, Stephen HENDRICKS
  • Patent number: RE46683
    Abstract: Disclosed are methods and kits applicable to sequencing methods, such as Sanger dideoxy sequencing methods. The methods and kits disclosed utilize a cationically charged nucleic acid terminator in combination with a discriminatory polymerase.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: January 23, 2018
    Assignee: Applied Biosystems, LLC
    Inventors: Barnett Rosenblum, Steven Menchen, Shaheer Khan, Paul Kenney