Patents by Inventor Barrie Keyworth

Barrie Keyworth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9941955
    Abstract: A method may include receiving, by a switching engine, an optical signal that includes a channel. The method may include applying, by the switching engine, a first beam steering grating to direct a first portion of the channel to a first output port. The method may include applying, by the switching engine, one or more second beam steering gratings to direct at least one of a second portion of the channel to a second output port, or a third portion of the channel to a photodetector. The third portion may be approximately less, in power, than 10 percent of the channel.
    Type: Grant
    Filed: April 24, 2016
    Date of Patent: April 10, 2018
    Assignee: Lumentum Operations LLC
    Inventors: Ian Breukelaar, Yi Liang, Shane H. Woodside, Barrie Keyworth, Wayne Bonnet, Peter David Roorda, Brandon C. Collings, Brian Smith
  • Patent number: 9866315
    Abstract: A method may include receiving, by a switching engine, an optical signal. The optical signal may carry a super-channel that includes a plurality of sub-carriers to be directed toward respective output ports. The switching engine may have a plurality of regions of pixels on which respective sub-carriers, of the plurality of sub-carriers, are incident. The method may include applying, by the switching engine, respective single beam steering gratings to first, overlapping, areas of the plurality of regions of pixels. The method may include applying, by the switching engine, one or more respective pluralities of beam steering gratings to second, overlapping areas of the plurality of regions of pixels. The method may include directing, based on the single beam steering gratings and the one or more pluralities of beam steering gratings, parts of the optical signal toward the respective output ports.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: January 9, 2018
    Assignee: Lumentum Operations LLC
    Inventors: Barrie Keyworth, John Michael Miller, Andrew Parks, Dan Burke, Peter David Roorda, Brandon C. Collings, Brian Smith
  • Patent number: 9575260
    Abstract: The number of wavelength selective switch (WSS) units in a WSS device can be doubled by using polarization properties of optical beams propagating through the WSS device. Beams from different WSS units are orthogonally polarized at the front end, propagated through collimator, wavelength dispersing element, and a focusing element, and impinge on a polarizing beamsplitter, which directs sub-beams at different polarizations to different directing elements of a director array. A polarization diversity configuration at the back end can be used to reduce polarization dependent loss.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: February 21, 2017
    Assignee: Lumentum Operations LLC
    Inventors: Barrie Keyworth, Paul Colbourne
  • Publication number: 20160316281
    Abstract: A method may include receiving, by a switching engine, an optical signal. The optical signal may carry a super-channel that includes a plurality of sub-carriers to be directed toward respective output ports. The switching engine may have a plurality of regions of pixels on which respective sub-carriers, of the plurality of sub-carriers, are incident. The method may include applying, by the switching engine, respective single beam steering gratings to first, overlapping, areas of the plurality of regions of pixels. The method may include applying, by the switching engine, one or more respective pluralities of beam steering gratings to second, overlapping areas of the plurality of regions of pixels. The method may include directing, based on the single beam steering gratings and the one or more pluralities of beam steering gratings, parts of the optical signal toward the respective output ports.
    Type: Application
    Filed: April 22, 2016
    Publication date: October 27, 2016
    Inventors: Barrie KEYWORTH, John Michael Miller, Andrew Parks, Dan Burke, Peter David Roorda, Brandon C. Collings, Brian Smith
  • Publication number: 20160315697
    Abstract: A method may include receiving, by a switching engine, an optical signal that includes a channel. The method may include applying, by the switching engine, a first beam steering grating to direct a first portion of the channel to a first output port. The method may include applying, by the switching engine, one or more second beam steering gratings to direct at least one of a second portion of the channel to a second output port, or a third portion of the channel to a photodetector. The third portion may be approximately less, in power, than 10 percent of the channel.
    Type: Application
    Filed: April 24, 2016
    Publication date: October 27, 2016
    Inventors: Ian BREUKELAAR, Yi LIANG, Shane H. WOODSIDE, Barrie KEYWORTH, Wayne BONNET, Peter David ROORDA, Brandon C. COLLINGS, Brian SMITH
  • Publication number: 20160282563
    Abstract: The number of wavelength selective switch (WSS) units in a WSS device can be doubled by using polarization properties of optical beams propagating through the WSS device. Beams from different WSS units are orthogonally polarized at the front end, propagated through collimator, wavelength dispersing element, and a focusing element, and impinge on a polarizing beamsplitter, which directs sub-beams at different polarizations to different directing elements of a director array. A polarization diversity configuration at the back end can be used to reduce polarization dependent loss.
    Type: Application
    Filed: March 31, 2016
    Publication date: September 29, 2016
    Inventors: Barrie KEYWORTH, Paul COLBOURNE
  • Patent number: 9304257
    Abstract: The number of wavelength selective switch (WSS) units in a WSS device can be doubled by using polarization properties of optical beams propagating through the WSS device. Beams from different WSS units are orthogonally polarized at the front end, propagated through collimator, wavelength dispersing element, and a focusing element, and impinge on a polarizing beamsplitter, which directs sub-beams at different polarizations to different directing elements of a director array. A polarization diversity configuration at the back end can be used to reduce polarization dependent loss.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: April 5, 2016
    Assignee: Lumentum Operations LLC
    Inventors: Barrie Keyworth, Paul Colbourne
  • Patent number: 9250391
    Abstract: A multicast optical switch uses a diffractive bulk optical element, which splits at least one input optical beam into sub-beams, which freely propagate in a medium towards an array of directors, such as MEMS switches, for directing the sub-beams to output ports. Freely propagating optical beams can cross each other without introducing mutual optical loss. The amount of crosstalk is limited by scattering in the optical medium, which can be made virtually non-existent. Therefore, the number of the crossover connections, and consequently the number of inputs and outputs of a multicast optical switch, can be increased substantially without a loss or a crosstalk penalty.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: February 2, 2016
    Assignee: Lumentum Operations LLC
    Inventors: Sheldon McLaughlin, Peter David Roorda, Paul Colbourne, Barrie Keyworth
  • Publication number: 20150293307
    Abstract: A multicast optical switch uses a diffractive bulk optical element, which splits at least one input optical beam into sub-beams, which freely propagate in a medium towards an array of directors, such as MEMS switches, for directing the sub-beams to output ports. Freely propagating optical beams can cross each other without introducing mutual optical loss. The amount of crosstalk is limited by scattering in the optical medium, which can be made virtually non-existent. Therefore, the number of the crossover connections, and consequently the number of inputs and outputs of a multicast optical switch, can be increased substantially without a loss or a crosstalk penalty.
    Type: Application
    Filed: June 8, 2015
    Publication date: October 15, 2015
    Inventors: Sheldon MCLAUGHLIN, Peter David ROORDA, Paul COLBOURNE, Barrie KEYWORTH
  • Publication number: 20150277052
    Abstract: The number of wavelength selective switch (WSS) units in a WSS device can be doubled by using polarization properties of optical beams propagating through the WSS device. Beams from different WSS units are orthogonally polarized at the front end, propagated through collimator, wavelength dispersing element, and a focusing element, and impinge on a polarizing beamsplitter, which directs sub-beams at different polarizations to different directing elements of a director array. A polarization diversity configuration at the back end can be used to reduce polarization dependent loss.
    Type: Application
    Filed: March 31, 2014
    Publication date: October 1, 2015
    Inventors: Barrie Keyworth, Paul Colbourne
  • Patent number: 9069139
    Abstract: A multicast optical switch uses a diffractive bulk optical element, which splits at least one input optical beam into sub-beams, which freely propagate in a medium towards an array of directors, such as MEMS switches, for directing the sub-beams to output ports. Freely propagating optical beams can cross each other without introducing mutual optical loss. The amount of crosstalk is limited by scattering in the optical medium, which can be made virtually non-existent. Therefore, the number of the crossover connections, and consequently the number of inputs and outputs of a multicast optical switch, can be increased substantially without a loss or a crosstalk penalty.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: June 30, 2015
    Assignee: JDS Uniphase Corporation
    Inventors: Sheldon McLaughlin, Peter David Roorda, Paul Colbourne, Barrie Keyworth
  • Patent number: 9036229
    Abstract: A MEMS arrangement is provided that has a top plane containing a rotatable element such as a mirror. There is a middle support frame plane, and a lower electrical substrate plane. The rotatable element is supported by a support frame formed in the middle support frame plane so as to be rotatable with respect to the frame in a first axis of rotation. The frame is mounted so as to be rotatable with respect to a second axis of rotation. Rotation in the first axis of rotation is substantially independent of rotation in the second axis of rotation.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: May 19, 2015
    Assignee: Micralyne Inc.
    Inventors: Barrie Keyworth, Kevin Kornelsen, Jared Crawford
  • Publication number: 20140036330
    Abstract: A MEMS arrangement is provided that has a top plane containing a rotatable element such as a mirror. There is a middle support frame plane, and a lower electrical substrate plane. The rotatable element is supported by a support frame formed in the middle support frame plane so as to be rotatable with respect to the frame in a first axis of rotation. The frame is mounted so as to be rotatable with respect to a second axis of rotation. Rotation in the first axis of rotation is substantially independent of rotation in the second axis of rotation.
    Type: Application
    Filed: December 27, 2012
    Publication date: February 6, 2014
    Applicant: MICRALYNE INC.
    Inventors: Barrie Keyworth, Kevin Kornelsen, Jared Crawford
  • Publication number: 20130209031
    Abstract: A multicast optical switch uses a diffractive bulk optical element, which splits at least one input optical beam into sub-beams, which freely propagate in a medium towards an array of directors, such as MEMS switches, for directing the sub-beams to output ports. Freely propagating optical beams can cross each other without introducing mutual optical loss. The amount of crosstalk is limited by scattering in the optical medium, which can be made virtually non-existent. Therefore, the number of the crossover connections, and consequently the number of inputs and outputs of a multicast optical switch, can be increased substantially without a loss or a crosstalk penalty.
    Type: Application
    Filed: July 26, 2012
    Publication date: August 15, 2013
    Inventors: Sheldon McLaughlin, Peter David Roorda, Paul Colbourne, Barrie Keyworth
  • Patent number: 8368983
    Abstract: A MEMS arrangement is provided that has a top plane containing a rotatable element such as a mirror. There is a middle support frame plane, and a lower electrical substrate plane. The rotatable element is supported by a support frame formed in the middle support frame plane so as to be rotatable with respect to the frame in a first axis of rotation. The frame is mounted so as to be rotatable with respect to a second axis of rotation. Rotation in the first axis of rotation is substantially independent of rotation in the second axis of rotation.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: February 5, 2013
    Assignee: Micralyne, Inc.
    Inventors: Barrie Keyworth, Kevin Kornelsen, Jared Crawford
  • Patent number: 8233214
    Abstract: A fiber amplifier having two erbium doped fiber coils and a pump laser diode optically coupled, through a fiber array, to a planar lightwave circuit, is described. A photodetector array, a multiport free-space optical isolator, and a strip of thin-film gain flattening filter are attached to a side surface of the planar lightwave circuit, which has a tunable optical power splitter for variably splitting the optical pump power for the laser diode between the two erbium doped fiber coils, and variable tilters for correcting the gain tilt of the amplifier. The variable splitter and the tilters are thermally tunable Mach-Zehnder interferometers.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: July 31, 2012
    Inventors: Maxim Bolshtyansky, Gregory Cowle, Barrie Keyworth, Peter David Roorda
  • Patent number: 8208192
    Abstract: A MEMS arrangement is provided that has a top plane containing a rotatable element such as a mirror. There is a middle support frame plane, and a lower electrical substrate plane. The rotatable element is supported by a support frame formed in the middle support frame plane so as to be rotatable with respect to the frame in a first axis of rotation. The frame is mounted so as to be rotatable with respect to a second axis of rotation. Rotation in the first axis of rotation is substantially independent of rotation in the second axis of rotation.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: June 26, 2012
    Assignee: Micralyne Inc.
    Inventors: Barrie Keyworth, Kevin Kornelsen, Jared Crawford
  • Patent number: 8081875
    Abstract: The present invention relates to a wavelength switch including two switching stages. A single actuation array of reflecting elements of a first switching stage routes sub-beams at different wavelength bands to a plurality of actuation arrays of reflecting elements of a second switching stage. Each second-stage actuation array routes sub-beams to a group of output ports associated with that second-stage actuation array. Advantageously, the sub-beams are redirected from the first switching stage to the second switching stage by a reflecting relay assembly, without being combined or coupled into fibers.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: December 20, 2011
    Assignee: JDS Uniphase Corporation
    Inventors: Barrie Keyworth, Paul Colbourne
  • Publication number: 20110170867
    Abstract: The present invention relates to a wavelength switch including two switching stages. A single actuation array of reflecting elements of a first switching stage routes sub-beams at different wavelength bands to a plurality of actuation arrays of reflecting elements of a second switching stage. Each second-stage actuation array routes sub-beams to a group of output ports associated with that second-stage actuation array. Advantageously, the sub-beams are redirected from the first switching stage to the second switching stage by a reflecting relay assembly, without being combined or coupled into fibers.
    Type: Application
    Filed: February 8, 2008
    Publication date: July 14, 2011
    Inventors: Barrie Keyworth, Paul Colbourne
  • Publication number: 20100265555
    Abstract: A MEMS arrangement is provided that has a top plane containing a rotatable element such as a mirror. There is a middle support frame plane, and a lower electrical substrate plane. The rotatable element is supported by a support frame formed in the middle support frame plane so as to be rotatable with respect to the frame in a first axis of rotation. The frame is mounted so as to be rotatable with respect to a second axis of rotation. Rotation in the first axis of rotation is substantially independent of rotation in the second axis of rotation.
    Type: Application
    Filed: June 30, 2010
    Publication date: October 21, 2010
    Applicant: MICRALYNE INC.
    Inventors: BARRIE KEYWORTH, KEVIN KORNELSEN, JARED CRAWFORD