Patents by Inventor Barry Stipe

Barry Stipe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060090178
    Abstract: A magnetic head including a media heating device that is fabricated within the magnetic head structure. The media heating device is fabricated between the writing magnetic pole of a perpendicular magnetic head and the ABS surface of the head, where it serves to heat the magnetic media during the passage of the magnetic media beneath the writing magnetic pole of the magnetic head. The media heating device includes an optical cavity resonator that can produce a high intensity near-field optical spot of subwavelength dimension at the write pole that is appropriate for perpendicular recording at 1 Tbits/in2 and beyond. Optical energy is coupled into the resonant cavity through a waveguide that is placed proximate the cavity, and optical energy is coupled out of the cavity through a post that is placed within the cavity.
    Type: Application
    Filed: October 22, 2004
    Publication date: April 27, 2006
    Inventor: Barry Stipe
  • Publication number: 20060023354
    Abstract: A disk drive is described having a capability of burnishing the sliders on demand by using a heater in the slider to thermally protrude the slider. Each slider includes a heating element with a sufficient thermal expansion stroke to bring the area of the slider containing the transducer into contact with the disk surface to burnish the slider. Preferably the heater is used to bring the slider into contact with the disk to burnish the lowest flying part of the slider body after the drive has been assembled, and remove most or all of the overcoat and recession, and exposing the transducers at the ABS. The burnish process is performed in situ in the drive and the drive is preferably hermetically sealed to reduce the risk of corrosion. The slider can be flown and magnetically tested prior to burnishing off the overcoat to avoid corroding the head before the drive is assembled.
    Type: Application
    Filed: July 30, 2004
    Publication date: February 2, 2006
    Inventor: Barry Stipe
  • Publication number: 20060002026
    Abstract: A recording medium according to the invention has a magnetic recording layer with an L10 magnetic material deposited with a (111) preferred orientation and soft underlayer (SUL). One set of embodiments includes an intermediate layer (seed layer or underlayer) between the L10 media and SUL. The intermediate layer can be a close-packed surface structure (triangular lattice) to promote (111) orientation of the L10 media. For example, the intermediate layer can be a (111) oriented, face-centered-cubic (fcc) material such as platinum, palladium, iridium, rhodium, FePt, FePd, or FePdPt alloys; or the intermediate layer can be a (100) oriented hexagonal-close-packed (hcp) material such as ruthenium, rhenium, or osmium. Alternatively, the intermediate layer can be an amorphous material. The L10 recording layer of the invention can be deposited with a matrix material to form grain boundaries and provide magnetic isolation of the grains of L10 material.
    Type: Application
    Filed: June 30, 2004
    Publication date: January 5, 2006
    Inventors: Barry Stipe, Jan-Ulrich Thiele
  • Publication number: 20050254355
    Abstract: A device includes an optical gain medium through which optical radiation is amplified. The device includes first and second reflectors disposed around the gain medium. One of the reflectors includes an emission region though which optical output is emitted and a metallic structure that has an array of features that couple the radiation to at least one surface plasmon mode of the structure, thereby enhancing the device's output. The device may be a laser, e.g., a diode laser. The emission region may have a width of, for example, between 10 and 100 nanometers, and this emission region may be in the shape of a rectangular slit. The optical radiation in the gain medium may be advantageously polarized perpendicularly to an axis along which a longer dimension of the emission region is oriented. The device is useful for data recording, e.g., thermally assisted data recording.
    Type: Application
    Filed: July 15, 2005
    Publication date: November 17, 2005
    Inventors: Charles Rettner, Barry Stipe
  • Publication number: 20050068666
    Abstract: A hermetic sealing approach involves welding an Aluminum cover onto a low-cost Aluminum housing. According to an example embodiment of the present invention, a metal housing having a base and sidewalls extending upward therefrom is adapted to receive and couple to an HDD arrangement. The metal housing is formed using material and processing (e.g., cold formed or die cast Aluminum) that are relatively inexpensive. A feedthrough arrangement including a plurality of communication pins extends through an opening in the base and is coupled thereto, with the communication pins adapted to pass signals between the inside and the outside of the metal housing. A metal cover is welded to an upper portion of the sidewalls and, with the feedthrough arrangement, hermetically seals the metal housing.
    Type: Application
    Filed: September 29, 2003
    Publication date: March 31, 2005
    Inventors: David Albrecht, Barry Stipe, Timothy Strand