Patents by Inventor Behzad Tavassoli Hozouri

Behzad Tavassoli Hozouri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10211524
    Abstract: Systems and methods for enhanced antenna isolation are disclosed. An example antenna isolation system includes a first antenna element of an antenna array configured to transmit or receive wireless transmissions, a second antenna element of the antenna array adjacent to the first antenna element in the antenna array, and a scattering structure disposed substantially between the first and second antenna elements. The scattering structure is configured to reduce electromagnetic coupling between the first and second antenna elements by, at least in part, directing electromagnetic radiation coupled through the first antenna element away from the second antenna element.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: February 19, 2019
    Assignee: QUALCOMM Incorporated
    Inventor: Behzad Tavassoli Hozouri
  • Patent number: 10033099
    Abstract: A spacecraft communications payload includes a beam forming network (BFN), wherein the BFN includes a first feed waveguide and a first set of branch waveguides, each branch waveguide in the first set operating in a frequency band having a characteristic waveguide wavelength ?g1. A proximal portion of the first set of branch waveguides is communicatively coupled with the first feed waveguide. A distal portion of the first set of branch waveguides is communicatively coupled by way of an array of slots with a plurality of radiating elements. A separation distance between adjacent slots in the array is approximately equal to ?g, and the array of slots is configured as a honeycomb-like triaxial lattice. In some implementations, a compact BFN may be configured to simultaneously operate at two different polarizations (“dual-polarized”) and/or frequency bands (“dual-band”).
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: July 24, 2018
    Assignee: Space Systems/Loral, LLC
    Inventors: Peter S. Simon, Michael Aliamus, Behzad Tavassoli Hozouri, Robert Jones, Michael Grall
  • Patent number: 9947978
    Abstract: An orthomode transducer (OMT) configured as a compact three port septum polarizer waveguide where one of the three ports is configured to propagate linear orthogonally polarized signals, and an edge of the septum facing that port has a profile including three or more segments with respective facing edges spaced at diverse respective distances from the one of the three ports that is configured to propagate linear orthogonally polarized signals. The three or more segments include one or both of a notch and a protrusion.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: April 17, 2018
    Assignee: Space Systems/Loral, LLC
    Inventor: Behzad Tavassoli Hozouri
  • Publication number: 20170222315
    Abstract: Systems and methods for enhanced antenna isolation are disclosed. An example antenna isolation system includes a first antenna element of an antenna array configured to transmit or receive wireless transmissions, a second antenna element of the antenna array adjacent to the first antenna element in the antenna array, and a scattering structure disposed substantially between the first and second antenna elements. The scattering structure is configured to reduce electromagnetic coupling between the first and second antenna elements by, at least in part, directing electromagnetic radiation coupled through the first antenna element away from the second antenna element.
    Type: Application
    Filed: April 20, 2017
    Publication date: August 3, 2017
    Inventor: Behzad Tavassoli Hozouri
  • Publication number: 20170170561
    Abstract: A spacecraft communications payload includes a beam forming network (BFN), wherein the BFN includes a first feed waveguide and a first set of branch waveguides, each branch waveguide in the first set operating in a frequency band having a characteristic waveguide wavelength ?g1. A proximal portion of the first set of branch waveguides is communicatively coupled with the first feed waveguide. A distal portion of the first set of branch waveguides is communicatively coupled by way of an array of slots with a plurality of radiating elements. A separation distance between adjacent slots in the array is approximately equal to ?g, and the array of slots is configured as a honeycomb-like triaxial lattice. In some implementations, a compact BFN may be configured to simultaneously operate at two different polarizations (“dual-polarized”) and/or frequency bands (“dual-band”).
    Type: Application
    Filed: December 14, 2015
    Publication date: June 15, 2017
    Inventors: Peter S. Simon, Michael Aliamus, Behzad Tavassoli Hozouri, Robert Jones, Michael Grall
  • Patent number: 9531048
    Abstract: A mode filter provides a low-loss transmission path for RF signals propagating in a first mode, while substantially suppressing at least one second mode. The mode filter includes a proximal port and a distal port, having a respective characteristic cross sectional dimension Dp1 and Dp2, and an electrically conductive hollow tube having a longitudinal axis that extends a length L between a distal end of the proximal port and a proximal end of the distal port. A cross section transverse to the longitudinal axis is non-uniform along length L and has a minimum internal characteristic dimension Dmin at least at a first longitudinal position and a maximum internal characteristic dimension Dmax at least at a second longitudinal position. The mode filter is configured to suppress the at least one second mode by at least 5 dB, and Dmax is less than 2.5 times the greater of Dp1 and Dp2.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: December 27, 2016
    Assignee: Space Systems/Loral, LLC
    Inventor: Behzad Tavassoli Hozouri
  • Patent number: 8872714
    Abstract: A wide beam radio frequency (RF) antenna includes a waveguide and one or more electrically conductive protrusions. The waveguide has at least one electrically conductive interior wall surface, a boresight defined by a longitudinal axis, and an aperture plane, transverse to the longitudinal axis, disposed at a distal end of the waveguide. A first proximal portion of each protrusion is electrically coupled to the electrically conductive interior wall surface, a distal portion of the protrusion being outside the aperture plane.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: October 28, 2014
    Assignee: Space Systems/Loral, LLC
    Inventor: Behzad Tavassoli Hozouri
  • Publication number: 20140266961
    Abstract: A mode filter provides a low-loss transmission path for RF signals propagating in a first mode, while substantially suppressing at least one second mode. The mode filter includes a proximal port and a distal port, having a respective characteristic cross sectional dimension Dp1 and Dp2, and an electrically conductive hollow tube having a longitudinal axis that extends a length L between a distal end of the proximal port and a proximal end of the distal port. A cross section transverse to the longitudinal axis is non-uniform along length L and has a minimum internal characteristic dimension Dmin at least at a first longitudinal position and a maximum internal characteristic dimension Dmax at least at a second longitudinal position. The mode filter is configured to suppress the at least one second mode by at least 5 dB, and Dmax is less than 2.5 times the greater of Dp1 and Dp2.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: SPACE SYSTEMS/LORAL, LLC
    Inventor: Behzad Tavassoli Hozouri
  • Publication number: 20130307741
    Abstract: A wide beam radio frequency (RF) antenna includes a waveguide and one or more electrically conductive protrusions. The waveguide has at least one electrically conductive interior wall surface, a boresight defined by a longitudinal axis, and an aperture plane, transverse to the longitudinal axis, disposed at a distal end of the waveguide. A first proximal portion of each protrusion is electrically coupled to the electrically conductive interior wall surface, a distal portion of the protrusion being outside the aperture plane.
    Type: Application
    Filed: May 17, 2012
    Publication date: November 21, 2013
    Applicant: SPACE SYSTEMS/LORAL, INC.
    Inventor: Behzad Tavassoli Hozouri
  • Patent number: 8244287
    Abstract: A radio and antenna system has a first microwave radio, second microwave radio, a first antenna and a dual mode coupler that has a first dual mode transmission line extending between a first port and a third port and a second dual mode transmission line extending between a second port and a microwave absorbing termination. The first microwave radio is coupled to the first port. The second microwave radio is coupled to the second port. The antenna is coupled to the third port. The first dual mode transmission line is coupled to the second dual mode transmission line so that microwave signals in either of the first dual mode transmission line and the second dual mode transmission line propagates microwave signals in the other of the first dual mode transmission line and the second dual mode transmission line.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: August 14, 2012
    Assignee: Z-Communications, Inc.
    Inventors: Behzad Tavassoli Hozouri, Vasanth Munikoti, Mahadevan Sridharan
  • Publication number: 20110105019
    Abstract: A radio and antenna system has a first microwave radio, second microwave radio, a first antenna and a dual mode coupler that has a first dual mode transmission line extending between a first port and a third port and a second dual mode transmission line extending between a second port and a microwave absorbing termination. The first microwave radio is coupled to the first port. The second microwave radio is coupled to the second port. The antenna is coupled to the third port. The first dual mode transmission line is coupled to the second dual mode transmission line so that microwave signals in either of the first dual mode transmission line and the second dual mode transmission line propagates microwave signals in the other of the first dual mode transmission line and the second dual mode transmission line.
    Type: Application
    Filed: October 29, 2009
    Publication date: May 5, 2011
    Inventors: Behzad Tavassoli Hozouri, Vasanth Munikoti, Mahadevan Sridharan
  • Patent number: 7733279
    Abstract: A monopole-type antenna (10) for multi- or wide-band use to transmit or receive radio frequency electromagnetic energy. A feed point (12) provides energy into the antenna or receives energy from the antenna. A driven radiating section (16) includes a first top-loading element (22) and a feed conductor (20) that electrically connects the feed point linearly to the first top-loading element, yet with the driven radiating section not electrically connected to a grounding surface (14). A parasitic radiating section (18) includes a second top-loading element (26) and a bridge conductor (24) that electrically connects the second top-loading element linearly to the grounding surface When energy is then provided at the feed point and conducted to the driven radiating section, it produces a first resonance mode, coupling at least some of the energy into and exciting the parasitic radiating section to produce a second resonance mode.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: June 8, 2010
    Inventor: Behzad Tavassoli Hozouri
  • Patent number: 7714794
    Abstract: An antenna particularly suitable for use in radio frequency identification (RFID) transponders. First and second half portions each include nominally straight conductive sections primarily defining a radiating characteristic and nominally spiral conductive sections creating a positive reactive characteristic of the antenna. The straight conductive sections have feed points for connecting the antenna into the RFID transponder, and further connect with the respective spiral conductive sections. The first and said second half portions characterize the antenna as being a dipole type, and adding an optional loop section connecting the straight conductive sections can further characterize it as being of a folded dipole type.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: May 11, 2010
    Inventor: Behzad Tavassoli Hozouri
  • Patent number: 7551145
    Abstract: An antenna (10) having a top (14), a bottom (16), and a longitudinal axis (20). An outer shell (12) of electrically conductive material is provided which is coaxial with the longitudinal axis, and which includes an outer top wall (22) joining with an outer side wall (24) that extends toward the bottom of the antenna. The shell defines an interior region (18) that is filled with a dielectric material, and the shell has at least one slot (30) with opposed slot ends. Each slot extends from one opposed slot end in the side wall, and at least partially across the top wall to an opposed other slot end. A coaxial feed (32) extends from the bottom of the antenna to the top of the antenna, to convey electromagnetic energy to or from the top wall of the antenna.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: June 23, 2009
    Assignee: Wide Sky Technology, Inc.
    Inventor: Behzad Tavassoli Hozouri
  • Publication number: 20090128440
    Abstract: An antenna. A base body made of a dielectric material is provide, wherein the base body has a bottom surface and an opposed top surface. A conductive layer of a conductive material is provided on the bottom surface of the base body. Two dipole conductors are provided that form a dipole on the top surface of the base body, wherein the dipole conductors are at least partially spiral shaped and have opposite directions. A balun is provided that has a feed conductor section and two ground conductor sections that are all substantially parallel. The balun receives an unbalanced signal from a feed line, transforms this signal, and provides it to the dipole conductors via the feed and ground conductor sections.
    Type: Application
    Filed: November 18, 2008
    Publication date: May 21, 2009
    Applicant: X-ETHER, INC.
    Inventor: Behzad Tavassoli Hozouri
  • Publication number: 20090109096
    Abstract: A monopole-type antenna (10) for multi- or wide-band use to transmit or receive radio frequency electromagnetic energy. A feed point (12) provides energy into the antenna or receives energy from the antenna. A driven radiating section (16) includes a first top-loading element (22) and a feed conductor (20) that electrically connects the feed point linearly to the first top-loading element, yet with the driven radiating section not electrically connected to a grounding surface (14). A parasitic radiating section (18) includes a second top-loading element (26) and a bridge conductor (24) that electrically connects the second top-loading element linearly to the grounding surface When energy is then provided at the feed point and conducted to the driven radiating section, it produces a first resonance mode, coupling at least some of the energy into and exciting the parasitic radiating section to produce a second resonance mode.
    Type: Application
    Filed: April 6, 2006
    Publication date: April 30, 2009
    Applicant: Transpacific Technologies, LLC
    Inventor: Behzad Tavassoli Hozouri
  • Publication number: 20090033580
    Abstract: An antenna particularly suitable for use in radio frequency identification (RFID) transponders. First and second half portions each include nominally straight conductive sections primarily defining a radiating characteristic and nominally spiral conductive sections creating a positive reactive characteristic of the antenna. The straight conductive sections have feed points for connecting the antenna into the RFID transponder, and further connect with the respective spiral conductive sections. The first and said second half portions characterize the antenna as being a dipole type, and adding an optional loop section connecting the straight conductive sections can further characterize it as being of a folded dipole type.
    Type: Application
    Filed: January 19, 2007
    Publication date: February 5, 2009
    Applicant: Transpacific Technologies, LLC
    Inventor: Behzad Tavassoli Hozouri
  • Publication number: 20080316138
    Abstract: An antenna having a cylindrical shaped dielectric core region that defines top, bottom, and side surfaces. Two laterally opposed conductive linking tracks are provided at the top or bottom surface and connect to respective groups of conductive antenna elements which extend across the top (or bottom surface) and at least partially down (or up) the side surface. A balun having two input terminals and two output terminals is provided at the top (or bottom) surface such that a feed line having two conductors extending from outside of the antenna connect respectively to the input terminals and the output terminals each connect respectively to a linking track.
    Type: Application
    Filed: October 26, 2007
    Publication date: December 25, 2008
    Applicant: X-ETHER, INC.
    Inventor: Behzad Tavassoli Hozouri
  • Publication number: 20080284660
    Abstract: A planar antenna having top and bottom nominally planar conductors that are oriented substantially planarly parallel and form an antenna interior region. The top conductor includes two radiating conductors each having an inner end and a distal end. A feed extends from outside of the planar antenna, through the antenna interior region, and to the top conductor. The feed includes a balun and has a first feed conductor that connects to the inner end of the first radiating conductor and a second feed conductor that connects to the inner end of the second radiating conductor.
    Type: Application
    Filed: June 24, 2008
    Publication date: November 20, 2008
    Applicant: X-ETHER, INC.
    Inventor: Behzad Tavassoli Hozouri
  • Patent number: 7446623
    Abstract: A mode transducer for converting an electromagnetic wave between TE1,0 and TM0,1 modes. A rectangular waveguide guides the wave while in TE1,0 mode and a circular waveguide guides the wave while in TM0,1 mode. The rectangular waveguide and the circular waveguide are joined by a chamber to form a right angle structure. The chamber particularly includes offset walls distended away from proximal portions of the rectangular waveguide to convert the electromagnetic wave between modes. Two of the mode transducers rotatably coupled with a suitable rotation mechanism may be used as a rotary waveguide joint.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: November 4, 2008
    Assignee: X-Ether, Inc.
    Inventor: Behzad Tavassoli Hozouri