Patents by Inventor Bernard Patrick Bewlay

Bernard Patrick Bewlay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210323008
    Abstract: An atomizing spray nozzle device includes an atomizing zone housing that receives different phases of materials used to form a coating. The atomizing zone housing mixes the different phases of the materials into a two-phase mixture of ceramic-liquid droplets in a carrier gas. The device also includes a plenum housing fluidly coupled with the atomizing housing and extending from the atomizing housing to a delivery end. The plenum housing includes an interior plenum that receives the two-phase mixture of ceramic-liquid droplets in the carrier gas from the atomizing zone housing. The device also includes one or more delivery nozzles fluidly coupled with the plenum chamber. The delivery nozzles provide outlets from which the two-phase mixture of ceramic-liquid droplets in the carrier gas is delivered onto one or more surfaces of a target object as the coating on the target object.
    Type: Application
    Filed: June 28, 2021
    Publication date: October 21, 2021
    Inventors: Ambarish Jayant Kulkarni, Hrishikesh Keshavan, Mehmet Dede, Bernard Patrick Bewlay, Guanghua Wang, Byron Pritchard, Michael Solomon Idelchik
  • Publication number: 20210277523
    Abstract: A coating system configured to be applied to a thermal barrier coating of an article includes an infiltration coating configured to be applied to the thermal barrier coating. The infiltration coating infiltrates at least some pores of the thermal barrier coating. The infiltration coating decomposes within the at least some pores of the thermal barrier coating to coat a portion of the at least some pores of the thermal barrier coating. The infiltration coating reduces a porosity of the thermal barrier coating. The coating system also includes a reactive phase spray formulation coat configured to be applied to the thermal barrier coating.
    Type: Application
    Filed: May 25, 2021
    Publication date: September 9, 2021
    Inventors: Hrishikesh Keshavan, Bernard Patrick Bewlay, Jose Sanchez, Margeaux Wallace, Byron Pritchard, Ambarish Kulkarni
  • Publication number: 20210254499
    Abstract: A turbine system includes a foam generating assembly having an in situ foam generating device at least partially positioned within the fluid passageway of the turbine engine, such that the in situ foam generating device is configured to generate foam within the fluid passageway of the turbine engine.
    Type: Application
    Filed: November 11, 2020
    Publication date: August 19, 2021
    Inventors: Ambarish Jayant Kulkarni, Byron Andrew Pritchard, Jr., Bernard Patrick Bewlay, Michael Edward Eriksen, Nicole Jessica Tibbetts
  • Patent number: 11068752
    Abstract: A method of inspecting a component using an image inspection controller that includes a processor communicatively coupled to a memory includes classifying each sample image in a first database as a first sample or a second sample using a classification module, extracting at least one class generic feature from each first sample to generate a plurality of class generic features, and extracting at least one class specific feature from each second sample to generate a plurality of class specific features. The method further includes combining the class generic features and the class specific features to generate a plurality of supplemental images. The method further includes storing the sample images and the supplemental images in a second database, classifying each sample image and each supplemental image, capturing at least one image of the component using a camera, and identifying at least one feature of the component in the at least one image of the component using the classification module.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: July 20, 2021
    Assignee: General Electric Company
    Inventors: Xiao Bian, Colin James Parris, Bernard Patrick Bewlay, Masako Yamada, Shaopeng Liu, Peng Chu
  • Patent number: 11053813
    Abstract: A turbine engine cleaning system includes a foam generator configured to generate foam, from a liquid detergent, to clean a turbine engine. The turbine engine cleaning system also includes an effluent capture and detergent regeneration sub-system having an inlet configured to receive an effluent from the turbine engine, processing components configured to process the effluent to regenerate a liquid detergent, and an outlet fluidly coupled with the foam generator to enable transport of the liquid detergent from the effluent capture and detergent regeneration sub-system to the foam generator.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: July 6, 2021
    Assignee: General Electric Company
    Inventors: Nicole Jessica Tibbetts, Rob Ray Anthony, Brian William Pfeiffer, Michael Edward Eriksen, Keith Anthony Lauria, Bernard Patrick Bewlay, Ambarish Jayant Kulkarni
  • Publication number: 20210199053
    Abstract: A coated component for a gas turbine engine is provided. The coated component includes a substrate having a surface and a ceramic coating. The ceramic coating includes one or more linear slots and one or more non-linear slots. The one or more non-linear slots intersect the one or more linear slots. The plurality of linear slots and the plurality of non-linear slots form segments of ceramic coating material.
    Type: Application
    Filed: December 26, 2019
    Publication date: July 1, 2021
    Inventors: Hrishikesh Keshavan, Curtis Alan Johnson, Hongqiang Chen, Bernard Patrick Bewlay, Byron Andrew Pritchard, JR., Mehmet M. Dede
  • Patent number: 11027317
    Abstract: A cleaning system and method uses a tank holding a fluid detergent and an equipment assembly formed from a plurality of discrete components joined together. One or more ultrasound transducers remove one or more deposits on the equipment assembly by generating and propagating high frequency ultrasound waves into the fluid detergent while the equipment assembly is in contact with the fluid detergent.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: June 8, 2021
    Assignee: General Electric Company
    Inventors: Nicole Tibbetts, Bernard Patrick Bewlay, Sean Robert Keith, Byron Andrew Pritchard, Jr., Brian Kalb, Evan Jarrett Dolley, Andrew James Jenkins, Alistair Searing, Stephen Francis Rutkowski
  • Patent number: 11028486
    Abstract: A method includes applying an infiltration coating on a thermal barrier coating of an article. The infiltration coating infiltrates at least some pores of the thermal barrier coating. The infiltration coating decomposes within the at least some pores of the thermal barrier coating to coat a portion of the at least some pores of the thermal barrier coating. The infiltration coating reduces a porosity of the thermal barrier coating. The method also includes applying a reactive phase spray formulation coating on the thermal barrier coating. The reactive phase spray formulation coating reacts with dust deposits on the thermal barrier coating.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: June 8, 2021
    Assignee: General Electric Company
    Inventors: Hrishikesh Keshavan, Bernard Patrick Bewlay, Jose Sanchez, Margeaux Wallace, Byron Pritchard, Ambarish Kulkarni
  • Patent number: 11028727
    Abstract: A turbine engine cleaning system includes a foaming nozzle. The foaming nozzle includes a wall having a thickness between an outer surface of the wall and an inner surface of the wall. The outer surface of the wall is configured to contact a detergent in which the foaming nozzle is configured to be disposed. The inner surface of the wall surrounds an inner plenum of the foaming nozzle, and the inner plenum is configured to receive an aerating gas. The foaming nozzle also includes a first row of first through holes fluidly coupled to, and extending between, a first row of first through hole inlets at the inner surface of the wall and a first row of first through hole outlets at the outer surface of the wall.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: June 8, 2021
    Assignee: General Electric Company
    Inventors: Ambarish Jayant Kulkarni, Keith Anthony Lauria, Michael Edward Eriksen, Nicole Jessica Tibbetts, Bernard Patrick Bewlay, Byron Andrew Pritchard, Jr., Shantanu M. Sane
  • Publication number: 20210131305
    Abstract: A coated component of a gas turbine engine includes a substrate defining a surface, a thermal barrier coating deposited on the surface of the substrate, a region of the component where the thermal barrier coating has spalled from the substrate, a layer of environmental contaminant compositions formed on one or more of the thermal barrier coating or the region of the component where the thermal barrier coating has spalled from the substrate in response to an initial exposure of the component to high operating temperatures of the gas turbine engine, and a thermal barrier coating (TBC) restoration coating deposited at least on the region of the component where there thermal barrier coating has spalled from the substrate.
    Type: Application
    Filed: November 4, 2020
    Publication date: May 6, 2021
    Inventors: Hrishikesh Keshavan, Ambarish Jayant Kulkarni, Margeaux Wallace, Byron Andrew Pritchard, JR., Almed M. Elkady, Atanu Saha, Mamatha Nagesh, Bernard Patrick Bewlay
  • Publication number: 20210133511
    Abstract: A method of inspecting a component using an image inspection controller that includes a processor communicatively coupled to a memory includes classifying each sample image in a first database as a first sample or a second sample using a classification module, extracting at least one class generic feature from each first sample to generate a plurality of class generic features, and extracting at least one class specific feature from each second sample to generate a plurality of class specific features. The method further includes combining the class generic features and the class specific features to generate a plurality of supplemental images. The method further includes storing the sample images and the supplemental images in a second database, classifying each sample image and each supplemental image, capturing at least one image of the component using a camera, and identifying at least one feature of the component in the at least one image of the component using the classification module.
    Type: Application
    Filed: October 31, 2019
    Publication date: May 6, 2021
    Inventors: Xiao Bian, Colin James Parris, Bernard Patrick Bewlay, Masako Yamada, Shaopeng Liu, Peng Chu
  • Patent number: 10994287
    Abstract: An atomizing spray device includes a housing having inlets that receive a first fluid and a slurry of ceramic particles and a second fluid. The inlets are fluidly coupled with outlets by an interior chamber that mixes the first fluid with the slurry to form a primary mixture of the first fluid and first atomized droplets of the slurry. A first outlet on a first side of the housing and a second outlet on the first side of the housing are shaped to change the primary mixture to form a secondary mixture of the first fluid and second atomized droplets of the slurry. The first outlet sprays the secondary mixture onto a first surface as a first layer of coating and the second outlet sprays the secondary mixture onto the first surface as a second layer of coating while the housing moves in a direction along the first surface.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: May 4, 2021
    Assignee: General Electric Company
    Inventors: Ambarish Kulkarni, Byron Pritchard, Hrishikesh Keshavan, Mehmet Dede, Bernard Patrick Bewlay
  • Patent number: 10995624
    Abstract: An article includes a substrate that is substantially opaque to visible light and a coating disposed on the substrate. The coating includes a coating material having an inherent index of refraction, wherein the coating has an effective index of refraction that is less than the inherent index of refraction, and wherein the effective index of refraction is less than 1.8.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: May 4, 2021
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Patrick James McCluskey, Bernard Patrick Bewlay, Ambarish Jayant Kulkarni, Krzysztof Jacek Lesnicki, Byron Andrew Pritchard, Nicole Jessica Tibbetts
  • Patent number: 10875054
    Abstract: Systems and methods that provide or restore a coating to a component are provided. The systems and methods utilized an atomizing spray device. A gas and a slurry that comprises fluid and ceramic particles are supplied to the atomizing spray device. The slurry and gas are discharged from the spray device to form two-phase droplets. The fluid within the droplets evaporates to prevent the fluid from becoming part of the coating as the droplets traverse through the air and prior to impacting the surface of the component.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: December 29, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Ambarish Kulkarni, Byron Pritchard, Shankar Sivaramakrishnan, Krzysztof Lesnicki, Hrishikesh Keshavan, Bernard Patrick Bewlay, Mehmet Dede, Larry Rosenzweig, Jay Morgan
  • Publication number: 20200400037
    Abstract: A method of cleaning a component within a turbine that includes disassembling the turbine engine to provide a flow path to an interior passageway of the component from an access point. The component has coked hydrocarbons formed thereon. The method further includes discharging a flow of cleaning solution towards the interior passageway from the access point, wherein the cleaning solution is configured to remove the coked hydrocarbons from the component.
    Type: Application
    Filed: September 2, 2020
    Publication date: December 24, 2020
    Inventors: Michael Robert Millhaem, Nicole Jessica Tibbetts, Byron Andrew Pritchard, JR., Bernard Patrick Bewlay, Keith Anthony Lauria, Ambarish Jayant Kulkarni, Mark Rosenzweig, Martin Matthew Morra, Timothy Mark Sambor, Andrew Jenkins
  • Patent number: 10871082
    Abstract: A turbine system includes a foam generating assembly having an in situ foam generating device at least partially positioned within the fluid passageway of the turbine engine, such that the in situ foam generating device is configured to generate foam within the fluid passageway of the turbine engine.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: December 22, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Ambarish Jayant Kulkarni, Byron Andrew Pritchard, Jr., Bernard Patrick Bewlay, Michael Edward Eriksen, Nicole Jessica Tibbetts
  • Patent number: 10861148
    Abstract: A system includes a borescope and at least one processor. The borescope includes a camera configured to acquire an acquisition series of frames of at least one target component. The at least one processor is operably coupled to the camera, and is configured to acquire the acquisition series of frames from the camera; determine a blurriness metric value for each of the frames; select frames that satisfy a threshold for the blurriness metric value to form an inspection series of frames; and perform an inspection analysis for the at least one target component using the inspection series of frames.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: December 8, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Wei Wang, Longyin Wen, Xiao Bian, Arpit Jain, David Scott Diwinsky, Bernard Patrick Bewlay
  • Publication number: 20200370443
    Abstract: System for selectively contacting a cleaning composition with a surface of a turbine engine component is presented. The system includes a cleaning apparatus and a manifold assembly. The cleaning apparatus includes an upper portion and a lower portion defining a cleaning chamber configured to allow selective contact between the cleaning composition and a surface of the first portion of the turbine engine component. The upper portion includes a plurality of fill holes in fluid communication with the cleaning chamber, and the lower portion includes a plurality of drain holes in fluid communication with the cleaning chamber. The manifold assembly is configured to selectively circulate the cleaning composition from a reservoir to the cleaning chamber via the plurality of fill holes, and recirculate the cleaning composition from the cleaning chamber to the reservoir via the plurality of drain holes. Methods for selectively cleaning a turbine engine component is also presented.
    Type: Application
    Filed: August 7, 2020
    Publication date: November 26, 2020
    Inventors: Nicole Jessica Tibbetts, Andrew James Jenkins, Bernard Patrick Bewlay, Evan Jarrett Dolley, John Watt, Christopher Perrett, Vincent Gerard Lauria
  • Patent number: 10845253
    Abstract: A gas turbine engine includes a core engine having a casing, a cowl disposed annularly around the casing such that a gap is formed between the casing and the cowl, and a thermal monitoring system having at least one camera positioned within the gap, wherein the at least one camera is configured to detect thermal radiation from at least one turbine component within the gap.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: November 24, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Guanghua Wang, Xiaoyue Liu, Bernard Patrick Bewlay
  • Patent number: 10830093
    Abstract: System for selectively contacting a cleaning composition with a surface of a turbine engine component is presented. The system includes a cleaning apparatus and a manifold assembly. The cleaning apparatus includes an upper portion and a lower portion defining a cleaning chamber configured to allow selective contact between the cleaning composition and a surface of the first portion of the turbine engine component. The upper portion includes a plurality of fill holes in fluid communication with the cleaning chamber, and the lower portion includes a plurality of drain holes in fluid communication with the cleaning chamber. The manifold assembly is configured to selectively circulate the cleaning composition from a reservoir to the cleaning chamber via the plurality of fill holes, and recirculate the cleaning composition from the cleaning chamber to the reservoir via the plurality of drain holes. Methods for selectively cleaning a turbine engine component is also presented.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: November 10, 2020
    Assignee: General Electric Company
    Inventors: Nicole Jessica Tibbetts, Andrew James Jenkins, Bernard Patrick Bewlay, Evan Jarrett Dolley, John Watt, Christopher Perrett, Vincent Gerard Lauria