Patents by Inventor Bhaswati Barat

Bhaswati Barat has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11820818
    Abstract: The present invention relates to Tri-Specific Binding Molecules, which are multi-chain polypeptide molecules that possess three Binding Domains and are thus capable of mediating coordinated binding to three epitopes. The Binding Domains may be selected such that the Tri-Specific Binding Molecules are capable of binding to any three different epitopes. Such epitopes may be epitopes of the same antigen or epitopes of two or three different antigens. In a preferred embodiment, one of such epitopes will be capable of binding to CD3, the second of such epitopes will be capable of binding to CD8, and the third of such epitopes will be capable of binding to an epitope of a Disease-Associated Antigen. The invention also provides a novel ROR1-binding antibody, as well as derivatives thereof and uses for such compositions.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: November 21, 2023
    Assignee: MACROGENICS, INC.
    Inventors: Leslie S. Johnson, Ling Huang, Gurunadh Reddy Chichili, Kalpana Shah, Chia-Ying Kao Lam, Stephen James Burke, Liqin Liu, Paul A. Moore, Ezio Bonvini, Bhaswati Barat
  • Publication number: 20220324995
    Abstract: The present invention is directed to molecules, such as monospecific antibodies and bispecific, trispecific or multispecific binding molecules, including diabodies, BITE® molecules, and antibodies that are capable of specifically binding to “Disintegrin and Metalloproteinase Domain-containing Protein 9” (“ADAM9”). The invention particularly concerns such binding molecules that are capable of exhibiting high affinity binding to human and non-human ADAM9. The invention further particularly relates to such molecules that are thereby cross-reactive with human ADAM9 and the ADAM9 of a non-human primate (e.g., a cynomolgus monkey). The invention additionally pertains to all such ADAM9-binding molecules that comprise a Light Chain Variable (VL) Domain and/or a Heavy Chain Variable (VH) Domain that has been humanized and/or deimmunized so as to exhibit reduced immunogenicity upon administration of such ADAM9-binding molecule to a recipient subject.
    Type: Application
    Filed: December 17, 2021
    Publication date: October 13, 2022
    Applicant: MacroGenics, Inc.
    Inventors: Deryk T. Loo, Juniper A. Scribner, Bhaswati Barat, Gundo Diedrich, Leslie S. Johnson, Ezio Bonvini
  • Patent number: 11242402
    Abstract: The present invention is directed to molecules, such as monospecific antibodies and bispecific, trispecific or multispecific binding molecules, including diabodies, BITE® molecules, and antibodies that are capable of specifically binding to “Disintegrin and Metalloproteinase Domain-containing Protein 9” (“ADAM9”). The invention particularly concerns such binding molecules that are capable of exhibiting high affinity binding to human and non-human ADAM9. The invention further particularly relates to such molecules that are thereby cross-reactive with human ADAM9 and the ADAM9 of a non-human primate (e.g., a cynomolgus monkey). The invention additionally pertains to all such ADAM9-binding molecules that comprise a Light Chain Variable (VL) Domain and/or a Heavy Chain Variable (VH) Domain that has been humanized and/or deimmunized so as to exhibit reduced immunogenicity upon administration of such ADAM9-binding molecule to a recipient subject.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: February 8, 2022
    Assignee: MacroGenics, Inc.
    Inventors: Deryk T. Loo, Juniper A. Scribner, Bhaswati Barat, Gundo Diedrich, Leslie S. Johnson, Ezio Bonvini
  • Publication number: 20210388102
    Abstract: The present invention is directed to immunoconjugates comprising an antibody or fragment thereof capable of specifically binding to “Disintegrin and Metalloproteinase Domain-containing Protein 9” (“ADAM9”) conjugated to at least one pharmacological agent. The invention particularly concerns such immunoconjugates that are cross-reactive with human ADAM9 and the ADAM9 of a non-human primate (e.g., a cynomolgus monkey). The invention additionally pertains to all such immunoconjugates that comprise a Light Chain Variable (VL) Domain and/or a Heavy Chain Variable (VH) Domain that has been humanized and/or deimmunized so as to exhibit reduced immunogenicity upon administration of such immunoconjugate to a recipient subject. The invention is also directed to pharmaceutical compositions that contain any of such immunoconjugates, and to methods involving the use of any of such immunoconjugates in the treatment of cancer and other diseases and conditions.
    Type: Application
    Filed: December 21, 2017
    Publication date: December 16, 2021
    Inventors: Stuart William Hicks, Nicholas C. Yoder, Bhaswati Barat, Ezio Bonvini, Gundo Diedrich, Leslie S. Johnson, Deryk Loo, Juniper A. Scribner
  • Publication number: 20210275685
    Abstract: The present invention is directed to immunoconjugates comprising an antibody or fragment thereof capable of specifically binding to “Disintegrin and Metalloproteinase Domain- containing Protein 9” (“ADAM9”) conjugated to at least one maytansinoid compound. The invention particularly concerns such immunoconjugates that are cross-reactive with human ADAM9 and the ADAM9 of a non-human primate (e.g., a cynomolgus monkey). The invention additionally pertains to all such immunoconjugates that comprise a Light Chain Variable (VL) Domain and/or a Heavy Chain Variable (VH) Domain that has been humanized and/or deimmunized so as to exhibit reduced immunogenicity upon administration of such immunoconjugate to a recipient subject. The invention is also directed to pharmaceutical compositions that contain any of such immunoconjugates, and to methods involving the use of any of such immunoconjugates in the treatment of cancer and other diseases and conditions.
    Type: Application
    Filed: June 25, 2019
    Publication date: September 9, 2021
    Inventors: Stuart William Hicks, Nicholas C. Yoder, Bhaswati Barat, Ezio Bonvini, Gundo Diedrich, Leslie S. Johnson, Deryk Loo, Juniper A. Scribner
  • Publication number: 20200207850
    Abstract: The present invention relates to Tri-Specific Binding Molecules, which are multi-chain polypeptide molecules that possess three Binding Domains and are thus capable of mediating coordinated binding to three epitopes. The Binding Domains may be selected such that the Tri-Specific Binding Molecules are capable of binding to any three different epitopes. Such epitopes may be epitopes of the same antigen or epitopes of two or three different antigens. In a preferred embodiment, one of such epitopes will be capable of binding to CD3, the second of such epitopes will be capable of binding to CD8, and the third of such epitopes will be capable of binding to an epitope of a Disease-Associated Antigen. The invention also provides a novel ROR1-binding antibody, as well as derivatives thereof and uses for such compositions.
    Type: Application
    Filed: March 13, 2020
    Publication date: July 2, 2020
    Inventors: Leslie S. JOHNSON, Ling HUANG, Gurunadh Reddy CHICHILI, Kalpana SHAH, Chia-Ying Kao LAM, Stephen James BURKE, Liqin LIU, Paul A. MOORE, Ezio BONVINI, Bhaswati BARAT
  • Patent number: 10647768
    Abstract: The present invention relates to Tri-Specific Binding Molecules, which are multi-chain polypeptide molecules that possess three Binding Domains and are thus capable of mediating coordinated binding to three epitopes. The Binding Domains may be selected such that the Tri-Specific Binding Molecules are capable of binding to any three different epitopes. Such epitopes may be epitopes of the same antigen or epitopes of two or three different antigens. In a preferred embodiment, one of such epitopes will be capable of binding to CD3, the second of such epitopes will be capable of binding to CD8, and the third of such epitopes will be capable of binding to an epitope of a Disease-Associated Antigen. The invention also provides a novel ROR1-binding antibody, as well as derivatives thereof and uses for such compositions.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: May 12, 2020
    Assignee: MACROGENICS, INC.
    Inventors: Leslie S. Johnson, Ling Huang, Gurunadh Reddy Chichili, Kalpana Shah, Chia-Ying Kao Lam, Stephen James Burke, Liqin Liu, Paul A. Moore, Ezio Bonvini, Bhaswati Barat
  • Publication number: 20200095333
    Abstract: The present invention is directed to a polypeptide (for example, an antigen-binding molecule) that comprises a polypeptide portion of a deimmunized serum-binding protein capable of binding to said serum protein. The presence of the serum-binding protein extends the serum half-life of the polypeptide, relative to the serum half-life of the polypeptide if lacking the polypeptide portion of the deimmunized serum-binding protein. The invention also pertains to methods and uses that employ such molecules.
    Type: Application
    Filed: June 28, 2019
    Publication date: March 26, 2020
    Applicant: MacroGenics, Inc.
    Inventors: Ezio Bonvini, Bhaswati Barat, Ling Huang, Leslie S. Johnson
  • Publication number: 20190382502
    Abstract: The present invention is directed to molecules, such as monospecific antibodies and bispecific, trispecific or multispecific binding molecules, including diabodies, BiTEs, and antibodies that are capable of specifically binding to “Disintegrin and Metalloproteinase Domain-containing Protein 9” (“ADAM9”). The invention particularly concerns such binding molecules that are capable of exhibiting high affinity binding to human and non-human ADAM9. The invention further particularly relates to such molecules that are thereby cross-reactive with human ADAM9 and the ADAM9 of a non-human primate (e.g., a cynomolgus monkey). The invention additionally pertains to all such ADAM9-binding molecules that comprise a Light Chain Variable (VL) Domain and/or a Heavy Chain Variable (VH) Domain that has been humanized and/or deimmunized so as to exhibit reduced immunogenicity upon administration of such ADAM9-binding molecule to a recipient subject.
    Type: Application
    Filed: December 21, 2017
    Publication date: December 19, 2019
    Applicant: MacroGenics, Inc.
    Inventors: Deryk T. Loo, Juniper A. Scribner, Bhaswati Barat, Gundo Diedrich, Leslie S. Johnson, Ezio Bonvini
  • Publication number: 20180371104
    Abstract: The present invention is directed to a polypeptide (for example, an antigen-binding molecule) that comprises a polypeptide portion of a deimmunized serum-binding protein capable of binding to said serum protein. The presence of the serum-binding protein extends the serum half-life of the polypeptide, relative to the serum half-life of the polypeptide if lacking the polypeptide portion of the deimmunized serum-binding protein. The invention also pertains to methods and uses that employ such molecules.
    Type: Application
    Filed: April 5, 2018
    Publication date: December 27, 2018
    Applicant: MacroGenics, Inc.
    Inventors: Ezio Bonvini, Bhaswati Barat, Ling Huang, Leslie S. Johnson
  • Publication number: 20170233472
    Abstract: The present invention is directed to optimized ROR1-binding molecules having enhanced affinity and superior ability to mediate redirected cytotoxicity of tumor cells relative to prior ROR1-binding molecules. More specifically, the invention relates to optimized ROR1-binding molecules that comprise Variable Light Chain and/or Variable Heavy Chain (VH) Domains that have been optimized for binding to an epitope present on the human ROR1 polypeptide so as to exhibit enhanced binding affinity for human ROR1 and/or a reduced immunogenicity upon administration to recipient subjects. The invention particularly pertains to bispecific, trispecific or multispecific ROR1-binding molecules, including bispecific diabodies, BiTEs, bispecific antibodies, trivalent binding molecules, etc. that comprise: (i) such optimized ROR1-binding Variable Domains and (ii) a domain capable of binding to an epitope of a molecule present on the surface of an effector cell.
    Type: Application
    Filed: February 15, 2017
    Publication date: August 17, 2017
    Applicant: MacroGenics, Inc.
    Inventors: Bhaswati Barat, Leslie S. Johnson, Paul A. Moore, Ralph Froman Alderson, Ezio Bonvini
  • Publication number: 20170198045
    Abstract: The present invention relates to Tri-Specific Binding Molecules, which are multichain polypeptide molecules that possess three Binding Domains and are thus capable of mediating coordinated binding to three epitopes. The Binding Domains may be selected such that the Tri-Specific Binding Molecules are capable of binding to any three different epitopes. Such epitopes may be epitopes of the same antigen or epitopes of two or three different antigens. In a preferred embodiment, one of such epitopes will be capable of binding to CD3, the second of such epitopes will be capable of binding to CD8, and the third of such epitopes will be capable of binding to an epitope of a Disease-Associated Antigen. The invention also provides a novel ROR1-binding antibody, as well as derivatives thereof and uses for such compositions.
    Type: Application
    Filed: May 29, 2015
    Publication date: July 13, 2017
    Applicant: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang, Gurunadh Reddy Chichili, Kalpana Shah, Chia-Ying Kao Lam, Stephen James Burke, Liqin Liu, Paul A. Moore, Ezio Bonvini, Bhaswati Barat
  • Publication number: 20160333111
    Abstract: The present invention is directed to a polypeptide (for example, an antigen-binding molecule) that comprises a polypeptide portion of a deimmunized serum-binding protein capable of binding to said serum protein. The presence of the serum-binding protein extends the serum half-life of the polypeptide, relative to the serum half-life of the polypeptide if lacking the polypeptide portion of the deimmunized serum-binding protein. The invention also pertains to methods and uses that employ such molecules.
    Type: Application
    Filed: May 24, 2016
    Publication date: November 17, 2016
    Applicant: MacroGenics, Inc.
    Inventors: Ezio Bonvini, Bhaswati Barat, Ling Huang, Leslie S. Johnson
  • Patent number: 9376495
    Abstract: The present invention is directed to a polypeptide (for example, an antigen-binding molecule) that comprises a polypeptide portion of a deimmunized serum-binding protein capable of binding to said serum protein. The presence of the serum-binding protein extends the serum half-life of the polypeptide, relative to the serum half-life of the polypeptide if lacking the polypeptide portion of the deimmunized serum-binding protein. The invention also pertains to methods and uses that employ such molecules.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: June 28, 2016
    Assignee: MacroGenics, Inc.
    Inventors: Ezio Bonvini, Bhaswati Barat, Ling Huang, Leslie S. Johnson
  • Publication number: 20150175697
    Abstract: The present invention is directed to a polypeptide (for example, an antigen-binding molecule) that comprises a polypeptide portion of a deimmunized serum-binding protein capable of binding to said serum protein. The presence of the serum-binding protein extends the serum half-life of the polypeptide, relative to the serum half-life of the polypeptide if lacking the polypeptide portion of the deimmunized serum-binding protein. The invention also pertains to methods and uses that employ such molecules.
    Type: Application
    Filed: May 16, 2012
    Publication date: June 25, 2015
    Applicant: MACROGENICS, INC.
    Inventors: Ezio Bonvini, Bhaswati Barat, Ling Huang, Leslie S. Johnson
  • Publication number: 20150044694
    Abstract: Conjugates of a C-terminal modified diabody and a nanoparticle are provided in which the C-terminal modification introduces a cysteine residue at a C-terminus of the diabody and the diabody is covalently linked to the nanoparticle via a heterobiofunctional linker attached to the introduced cysteine residue.
    Type: Application
    Filed: August 11, 2014
    Publication date: February 12, 2015
    Inventors: Anna M. WU, Shimon Weiss, Tove Olafsen, Fabien Florent Pinaud, Bhaswati Barat
  • Patent number: 8043830
    Abstract: The present invention provides methods of metabolically biotinylating recombinant proteins. Cell lines and specific protein and nucleic acid constructs for use in the methods of the present invention are also provided herein.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: October 25, 2011
    Assignee: The Regents of the University of California
    Inventors: Bhaswati Barat, Anna M. Wu
  • Publication number: 20100069616
    Abstract: Conjugates of a C-terminal modified diabody and a nanoparticle are provided in which the C-terminal modification introduces a cysteine residue at a C-terminus of the diabody and the diabody is covalently linked to the nanoparticle via a heterobiofunctional linker attached to the introduced cysteine residue.
    Type: Application
    Filed: August 6, 2009
    Publication date: March 18, 2010
    Applicant: The Regents of the University of California
    Inventors: Anna M. Wu, Shimon Weiss, Tove Olafsen, Fabien Florent Pinaud, Bhaswati Barat
  • Publication number: 20090275081
    Abstract: The present invention provides methods of metabolically biotinylating recombinant proteins. Cell lines and specific protein and nucleic acid constructs for use in the methods of the present invention are also provided herein.
    Type: Application
    Filed: January 30, 2009
    Publication date: November 5, 2009
    Applicant: The Regents of the University of California
    Inventors: Bhaswati Barat, Anna M. Wu