Patents by Inventor Bich-Yen Nguyen

Bich-Yen Nguyen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100059817
    Abstract: A semiconductor device includes a semiconductor layer of a first conductivity type and a first doping concentration. A first semiconductor region, used as drain, of the first conductivity type has a lower doping concentration than the semiconductor layer and is over the semiconductor layer. A gate dielectric is over the first semiconductor region. A gate electrode over the gate dielectric has a metal-containing center portion and first and second silicon portions on opposite sides of the center portion. A second semiconductor region, used as a channel, of the second conductivity type has a first portion under the first silicon portion and the gate dielectric. A third semiconductor region, used as a source, of the first conductivity type is laterally adjacent to the first portion of the second semiconductor region. The metal-containing center portion, replacing silicon, increases the source to drain breakdown voltage.
    Type: Application
    Filed: September 5, 2008
    Publication date: March 11, 2010
    Inventors: DANIEL PHAM, Bich-Yen Nguyen
  • Patent number: 7645651
    Abstract: A method of forming a metal oxide semiconductor (MOS) device comprises defining an active area in an unstrained semiconductor layer structure, depositing a hard mask overlying the active area and a region outside of the active area, patterning the hard mask to expose the active area, selectively growing a strained semiconductor layer overlying the exposed active area, and forming a remainder of the MOS device. The active area includes a first doped region of first conductivity type and a second doped region of second conductivity type. The strained semiconductor layer provides a biaxially strained channel for the MOS device.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: January 12, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Xiaoqiu Huang, Veeraraghavan Dhandapani, Bich-Yen Nguyen, Amanda M. Kroll, Daniel T. Pham
  • Publication number: 20090321873
    Abstract: In one embodiment, the invention provides substrates that are structured so that devices fabricated in a top layer thereof have properties similar to the same devices fabricated in a standard high resistivity substrate. Substrates of the invention include a support having a standard resistivity, a semiconductor layer arranged on the support substrate having a high-resistivity, preferably greater than about 1000 Ohms-cm, an insulating layer arranged on the high-resistivity layer, and a top layer arranged on the insulating layer. The invention also provides methods for manufacturing such substrates.
    Type: Application
    Filed: May 21, 2009
    Publication date: December 31, 2009
    Inventors: Bich-Yen Nguyen, Carlos Mazure
  • Publication number: 20090321872
    Abstract: In one embodiment, the invention provides engineered substrates having a support with surface pits, an intermediate layer of amorphous material arranged on the surface of the support so as to at least partially fill the surface pits, and a top layer arranged on the intermediate layer. The invention also provides methods for manufacturing the engineered substrates which deposit an intermediate layer on a pitted surface of a support so as to at least partially fill the surface pits, then anneal the intermediate layer, then assemble a donor substrate with the annealed intermediate layer to form an intermediate structure, and finally reduce the thickness of the donor substrate portion of the intermediate structure in order to form the engineered substrate.
    Type: Application
    Filed: May 20, 2009
    Publication date: December 31, 2009
    Inventors: Bich-Yen Nguyen, Carlos Mazure
  • Publication number: 20090321829
    Abstract: In preferred embodiments, the invention provides substrates that include a support, a first insulating layer arranged on the support, a non-mono-crystalline semi-conducting layer arranged on the first insulating layer, a second insulating layer arranged on the non-mono-crystalline semi-conducting layer; and top layer disposed on the second insulating layer. Additionally, a first gate electrode can be formed on the top layer and a second gate electrode can be formed in the non-mono-crystalline semi-conducting layer. The invention also provides methods for manufacture of such substrates.
    Type: Application
    Filed: May 21, 2009
    Publication date: December 31, 2009
    Inventors: Bich-Yen Nguyen, Carlos Mazure
  • Patent number: 7615806
    Abstract: Forming a semiconductor structure includes providing a substrate having a strained semiconductor layer overlying an insulating layer, providing a first device region for forming a first plurality of devices having a first conductivity type, providing a second device region for forming a second plurality of devices having a second conductivity type, and thickening the strained semiconductor layer in the second device region so that the strained semiconductor layer in the second device region has less strain that the strained semiconductor layer in the first device region. Alternatively, forming a semiconductor structure includes providing a first region having a first conductivity type, forming an insulating layer overlying at least an active area of the first region, anisotropically etching the insulating layer, and after anisotropically etching the insulating layer, deposing a gate electrode material overlying at least a portion of the insulating layer.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: November 10, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Voon-Yew Thean, Jian Chen, Bich-Yen Nguyen, Mariam G. Sadaka, Da Zhang
  • Patent number: 7585735
    Abstract: A method of forming a semiconductor device is provided in which a substrate (102) is provided which has a gate dielectric layer (106) disposed thereon, and a gate electrode (116) having first and second sidewalls is formed over the gate dielectric layer. First (146) and second (150) extension spacer structures are formed adjacent the first and second sidewalls, respectively.
    Type: Grant
    Filed: February 1, 2005
    Date of Patent: September 8, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Leo Mathew, Yang Du, Bich-Yen Nguyen, Voon-Yew Thean
  • Publication number: 20090218625
    Abstract: A semiconductor process and apparatus includes forming first and second metal gate electrodes (151, 161) over a hybrid substrate (17) by forming the first gate electrode (151) over a first high-k gate dielectric (121) and forming the second gate electrode (161) over at least a second high-k gate dielectric (122) different from the first gate dielectric (121). By forming the first gate electrode (151) over a first SOI substrate (90) formed by depositing (100) silicon and forming the second gate electrode (161) over an epitaxially grown (110) SiGe substrate (70), a high performance CMOS device is obtained which includes high-k metal PMOS gate electrodes (161) having improved hole mobility.
    Type: Application
    Filed: April 9, 2009
    Publication date: September 3, 2009
    Inventors: Olubunmi O. Adetutu, Mariam G. Sadaka, Ted R. White, Bich-Yen Nguyen
  • Patent number: 7575975
    Abstract: Forming a semiconductor structure includes providing a substrate having a strained semiconductor layer overlying an insulating layer, providing a first device region for forming a first plurality of devices having a first conductivity type, providing a second device region for forming a second plurality of devices having a second conductivity type, and thickening the strained semiconductor layer in the second device region so that the strained semiconductor layer in the second device region has less strain that the strained semiconductor layer in the first device region. Alternatively, forming a semiconductor structure includes providing a first region having a first conductivity type, forming an insulating layer overlying at least an active area of the first region, anisotropically etching the insulating layer, and after anisotropically etching the insulating layer, deposing a gate electrode material overlying at least a portion of the insulating layer.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: August 18, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Voon-Yew Thean, Jian Chen, Bich-Yen Nguyen, Mariam G. Sadaka, Da Zhang
  • Patent number: 7575968
    Abstract: A semiconductor process and apparatus provide a high performance CMOS devices (108, 109) with hybrid or dual substrates by etching a deposited oxide layer (62) using inverse slope isolation techniques to form tapered isolation regions (76) and expose underlying semiconductor layers (41, 42) in a bulk wafer structure prior to epitaxially growing the first and second substrates (84, 82) having different surface orientations that may be planarized with a single CMP process. By forming first gate electrodes (104) over a first substrate (84) that is formed by epitaxially growing (100) silicon and forming second gate electrodes (103) over a second substrate (82) that is formed by epitaxially growing (110) silicon, a high performance CMOS device is obtained which includes high-k metal PMOS gate electrodes having improved hole mobility.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: August 18, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mariam G. Sadaka, Debby Eades, Joe Mogab, Bich-Yen Nguyen, Melissa O. Zavala, Gregory S. Spencer
  • Patent number: 7560354
    Abstract: A process can include forming a doped semiconductor layer over a substrate. The process can also include performing an action that reduces a dopant content along an exposed surface of a workpiece that includes the substrate and the doped semiconductor layer. The action is performed after forming the doped semiconductor layer and before the doped semiconductor layer is exposed to a room ambient. In particular embodiments, the doped semiconductor layer includes a semiconductor material that includes a combination of at least two elements selected from the group consisting of C, Si, and Ge, and the doped semiconductor layer also includes a dopant, such as phosphorus, arsenic, boron, or the like. The action can include forming an encapsulating layer, exposing the doped semiconductor layer to radiation, annealing the doped semiconductor layer, or any combination thereof.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: July 14, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Stefan Zollner, Bich-Yen Nguyen
  • Publication number: 20090146180
    Abstract: A method of forming a metal oxide semiconductor (MOS) device comprises defining an active area in an unstrained semiconductor layer structure, depositing a hard mask overlying the active area and a region outside of the active area, patterning the hard mask to expose the active area, selectively growing a strained semiconductor layer overlying the exposed active area, and forming a remainder of the MOS device. The active area includes a first doped region of first conductivity type and a second doped region of second conductivity type. The strained semiconductor layer provides a biaxially strained channel for the MOS device.
    Type: Application
    Filed: December 6, 2007
    Publication date: June 11, 2009
    Inventors: Xiaoqiu Huang, Veeraraghavan Dhandapani, Bich-Yen Nguyen, Amanda M. Kroll, Daniel T. Pham
  • Patent number: 7544548
    Abstract: A semiconductor process and apparatus provide a shallow trench isolation region (96) with a trench liner (95, 104) for use in a hybrid substrate device (21) by lining a first trench with a first trench liner (95), and then lining a second trench formed within the first trench by depositing a second trench liner (104) that is anisotropically etched to expose an underlying substrate (70) on which is epitaxially grown a silicon layer (110) to fill the second trench. By forming first gate electrodes (251) over a first SOI substrate (90) using deposited (100) silicon and forming second gate electrodes (261) over an epitaxially grown (110) silicon substrate (110), a high performance CMOS device is obtained which includes high-k metal PMOS gate electrodes (261) having improved hole mobility.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: June 9, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mariam G. Sadaka, Ted R. White, Bich-Yen Nguyen
  • Patent number: 7538002
    Abstract: A semiconductor fabrication process includes forming isolation structures on either side of a transistor region, forming a gate structure overlying the transistor region, removing source/drain regions to form source/drain recesses, removing portions of the isolation structures to form recessed isolation structures, and filling the source/drain recesses with a source/drain stressor such as an epitaxially formed semiconductor. A lower surface of the source/drain recess is preferably deeper than an upper surface of the recessed isolation structure by approximately 10 to 30 nm. Filling the source/drain recesses may precede or follow forming the recessed isolation structures. An ILD stressor is then deposited over the transistor region such that the ILD stressor is adjacent to sidewalls of the source/drain structure thereby coupling the ILD stressor to the source/drain stressor.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: May 26, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Da Zhang, Vance H. Adams, Bich-Yen Nguyen, Paul A. Grudowski
  • Patent number: 7524707
    Abstract: A semiconductor process and apparatus includes forming first and second metal gate electrodes (151, 161) over a hybrid substrate (17) by forming the first gate electrode (151) over a first high-k gate dielectric (121) and forming the second gate electrode (161) over at least a second high-k gate dielectric (122) different from the first gate dielectric (121). By forming the first gate electrode (151) over a first SOI substrate (90) formed by depositing (100) silicon and forming the second gate electrode (161) over an epitaxially grown (110) SiGe substrate (70), a high performance CMOS device is obtained which includes high-k metal PMOS gate electrodes (161) having improved hole mobility.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: April 28, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Olubunmi O. Adetutu, Mariam G. Sadaka, Ted R. White, Bich-Yen Nguyen
  • Patent number: 7514313
    Abstract: A process of forming an electronic device can include forming an insulating layer over first and second active regions, and a field isolation region. The process can also include forming a seed layer and exposing the first active region. The process can further include selectively forming a first and second semiconductor layer over the first active region and the seed layer, respectively. The first and second semiconductor layers can be spaced-apart from each other. In one aspect, the process can include selectively forming the first and second semiconductor layers simultaneously at a substantially same point in time. In another aspect, an electronic device can include first and second transistor structures separated by a field isolation region and electrically connected by a conductive member. A semiconductor island, designed to be electrically floating, can lie between the conductive member and the base layer.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: April 7, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Omar Zia, Da Zhang, Venkat R. Kolagunta, Narayanan C. Ramani, Bich-Yen Nguyen
  • Patent number: 7494856
    Abstract: A semiconductor fabrication process includes forming an etch stop layer (ESL) overlying a buried oxide (BOX) layer and an active semiconductor layer overlying the ESL. A gate electrode is formed overlying the active semiconductor layer. Source/drain regions of the active semiconductor layer are etched to expose the ESL. Source/drain stressors are formed on the ESL where the source/drain stressors strain the transistor channel. Forming the ESL may include epitaxially growing a silicon germanium ESL having a thickness of approximately 30 nm or less. Preferably a ratio of the active semiconductor layer etch rate to the ESL etch rate exceeds 10:1. A wet etch using a solution of NH4OH:H2O heated to a temperature of approximately 75° C. may be used to etch the source/drain regions. The ESL may be silicon germanium having a first percentage of germanium.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: February 24, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Da Zhang, Ted R. White, Bich-Yen Nguyen
  • Publication number: 20090042373
    Abstract: A process can include forming a doped semiconductor layer over a substrate. The process can also include performing an action that reduces a dopant content along an exposed surface of a workpiece that includes the substrate and the doped semiconductor layer. The action is performed after forming the doped semiconductor layer and before the doped semiconductor layer is exposed to a room ambient. In particular embodiments, the doped semiconductor layer includes a semiconductor material that includes a combination of at least two elements selected from the group consisting of C, Si, and Ge, and the doped semiconductor layer also includes a dopant, such as phosphorus, arsenic, boron, or the like. The action can include forming an encapsulating layer, exposing the doped semiconductor layer to radiation, annealing the doped semiconductor layer, or any combination thereof.
    Type: Application
    Filed: August 8, 2007
    Publication date: February 12, 2009
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Stefan Zollner, Bich-Yen Nguyen
  • Publication number: 20080296620
    Abstract: An electronic device can include a semiconductor fin overlying an insulating layer. The electronic device can also include a semiconductor layer overlying the semiconductor fin. The semiconductor layer can have a first portion and a second portion that are spaced-apart from each other. In one aspect, the electronic device can include a conductive member that lies between and spaced-apart from the first and second portions of the semiconductor layer. The electronic device can also include a metal-semiconductor layer overlying the semiconductor layer. In another aspect, the semiconductor layer can abut the semiconductor fin and include a dopant. In a further aspect, a process of forming the electronic device can include reacting a metal-containing layer and a semiconductor layer to form a metal-semiconductor layer. In another aspect, a process can include forming a semiconductor layer, including a dopant, abutting a wall surface of a semiconductor fin.
    Type: Application
    Filed: July 16, 2008
    Publication date: December 4, 2008
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Da Zhang, Bich-Yen Nguyen
  • Patent number: 7446026
    Abstract: A method for forming a semiconductor device includes providing a semiconductor substrate having a first doped region and a second doped region, providing a dielectric over the first doped region and the second doped region, and forming a first gate stack over the dielectric over at least a portion of the first doped region. The first gate stack includes a metal portion over the dielectric, a first in situ doped semiconductor portion over the metal portion, and a first blocking cap over the in situ doped semiconductor portion. The method further includes performing implantations to form source/drain regions adjacent the first and second gate stack, where the first blocking cap has a thickness sufficient to substantially block implant dopants from entering the first in situ doped semiconductor portion. Source/drain embedded stressors are also formed.
    Type: Grant
    Filed: February 8, 2006
    Date of Patent: November 4, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Da Zhang, Bich-Yen Nguyen