Patents by Inventor Bicheng Liu

Bicheng Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10448904
    Abstract: The present disclosure provides a decomposition method based on basis material combination. In the present disclosure, a scanned object is divided into a plurality of regions, the basis material combinations used in each of the divided regions are different each other, and the scanned object is re-divided according to the re-determined equivalent atomic number of its each point until the change on decomposition coefficient meets certain conditions. Thereby, a decomposition method based on dynamic basis material combinations is realized, which reduces a decomposition error caused by improper selection of the basis material combination and improves the accuracy of the decomposition and substance identification of the multi-energy CT.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: October 22, 2019
    Assignees: TSINGHUA UNIVERSITY, NUCTECH COMPANY LIMITED
    Inventors: Liang Li, Zhiqiang Chen, Kejun Kang, Ziran Zhao, Li Zhang, Yuxiang Xing, Tiao Zhao, Jianmin Li, Bicheng Liu, Qian Yi
  • Publication number: 20190317240
    Abstract: The present disclosure provides a spiral Computed Tomography (CT) device and a three-dimensional image reconstruction method.
    Type: Application
    Filed: August 4, 2017
    Publication date: October 17, 2019
    Inventors: Zhiqiang CHEN, Ziran ZHAO, Yaohong LIU, Jianping GU, Qian YI, Bicheng LIU, Guangming XU
  • Patent number: 10388818
    Abstract: There is provided a semiconductor detector. According to an embodiment, the semiconductor detector may include a semiconductor detection material including a first side and a second side opposite to each other. One of the first side and the second side is a ray incident side that receives incident rays. The detector may further include a plurality of pixel cathodes disposed on the first side and a plurality of pixel anodes disposed on the second side. The pixel anodes and the pixel cathodes correspond to each other one by one. The detector may further include a barrier electrode disposed on a periphery of respective one of the pixel cathodes or pixel anodes on the ray incident side. According to the embodiment of the present disclosure, it is possible to effectively suppress charge sharing between the pixels and thus to improve an imaging resolution of the detector.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: August 20, 2019
    Assignee: NUCTECH COMPANY LIMITED
    Inventors: Lan Zhang, Yingshuai Du, Bo Li, Zonggui Wu, Jun Li, Xuepeng Cao, Haifan Hu, Jianping Gu, Guangming Xu, Bicheng Liu
  • Publication number: 20190196051
    Abstract: The present disclosure provides an image processing method, device, and computer readable storage medium, relating to the field of image processing technology, the method includes: acquiring a first undersampled image to be processed; and reconstructing, according to a mapping relationship between an undersampled image and a normally sampled original image, the first undersampled image to a corresponding first original image, wherein the mapping relationship is obtained by training a machine learning model with a second undersampled image and a normally sampled second original image corresponding to the second undersampled image as training samples.
    Type: Application
    Filed: December 26, 2018
    Publication date: June 27, 2019
    Inventors: Qi WANG, Bicheng LIU, Guangming XU
  • Publication number: 20190197721
    Abstract: The present disclosure discloses a method, apparatus and system for assisting security inspection, and relates to the field of security inspection. The method includes: acquiring registration information of an inspected object; acquiring a standard scanned image corresponding to the registration information; displaying the standard scanned image in an AR manner to determine whether the inspected object is a suspicious object through comparing the standard scanned image with an actual scanned image, the actual scanned image comprising an image of the inspected object.
    Type: Application
    Filed: December 20, 2018
    Publication date: June 27, 2019
    Inventors: Bicheng Liu, Haoran Zhang, Guangming Xu, Qi Wang, Qiangqiang Zhu, Yuan Wo
  • Publication number: 20190192090
    Abstract: The present disclosure provides a decomposition method based on basis material combination. In the present disclosure, a scanned object is divided into a plurality of regions, the basis material combinations used in each of the divided regions are different each other, and the scanned object is re-divided according to the re-determined equivalent atomic number of its each point until the change on decomposition coefficient meets certain conditions. Thereby, a decomposition method based on dynamic basis material combinations is realized, which reduces a decomposition error caused by improper selection of the basis material combination and improves the accuracy of the decomposition and substance identification of the multi-energy CT.
    Type: Application
    Filed: December 26, 2018
    Publication date: June 27, 2019
    Inventors: Liang Li, Zhiqiang Chen, Kejun Kang, Ziran Zhao, Li Zhang, Yuxiang Xing, Tiao Zhao, Jianmin Li, Bicheng Liu, Qian Yi
  • Patent number: 10295679
    Abstract: A semiconductor may include a semiconductor detection material including a first side and a second side opposite to each other, a cathode disposed on the first side, and an anode disposed on the second side. The anode includes an array of pixel anodes defining detection pixels of the semiconductor detector, and intermediate anodes disposed between adjacent ones of the pixel anodes. According to an embodiment of the present disclosure, it is possible to achieve signal correction to improve the energy resolution and the signal-to-noise ratio of the detector.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: May 21, 2019
    Assignee: NUCTECH COMPANY LIMITED
    Inventors: Lan Zhang, Yingshuai Du, Bo Li, Zonggui Wu, Jun Li, Xuepeng Cao, Haifan Hu, Jianping Gu, Guangming Xu, Bicheng Liu
  • Patent number: 10285252
    Abstract: Provided is a dual-energy ray scanning system, which includes a ray source for alternately emitting a high energy ray and a low energy ray; a filter includes a low energy filtering element and a low energy transmitting element; a control device for synchronously controlling the ray source and the filter, and the low energy filtering element includes a plurality of filter sheets, the low energy transmitting element comprises a plurality of transmission sheets, the filter sheets and the transmission sheets are arranged alternately and surround the ray source to form a cavity, and the ray source is located on a central axis of the cavity.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: May 7, 2019
    Assignee: NUCTECH COMPANY LIMITED
    Inventors: Yu Hu, Shangmin Sun, Juan Zheng, Bicheng Liu
  • Patent number: 10101473
    Abstract: The present disclosure provides a semiconductor detector. The semiconductor detector comprises: a detector crystal including a crystal body, an anode and a cathode; a field enhance electrode for applying a voltage to the detector crystal; an insulating material disposed between the field enhanced electrode and a surface of the detector crystal. The semiconductor detector further comprises a field enhanced electrode circuit board having a bottom connection layer in contact with the surface of the detector crystal and a top layer opposite to the bottom connection layer, wherein the top layer is connected to a high voltage input terminal of the semiconductor detector, and an insulating material is provided between the bottom connection layer and the detector surface of the detector crystal.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: October 16, 2018
    Assignee: Nuctech Company Limited
    Inventors: Lan Zhang, Yingshuai Du, Bo Li, Zonggui Wu, Jun Li, Xuepeng Cao, Haifan Hu, Jianping Gu, Guangming Xu, Bicheng Liu
  • Publication number: 20180189945
    Abstract: A method, a device and a security system for image data processing based on VR or AR are disclosed. In one aspect, an example image data processing method includes reconstructing, based on three-dimensional (3D) scanned data of a containing apparatus in which objects are contained, a 3D image of the containing apparatus and the objects contained in the containing apparatus. The reconstructed 3D image is stereoscopically displayed. Manipulation information is determined for at least one of the objects in the containing apparatus based on positioning information and action information of a user. At least a 3D image of the at least one object is reconstructed based on the determined manipulation information. The at least one reconstructed object is presented on the displayed 3D image.
    Type: Application
    Filed: December 29, 2017
    Publication date: July 5, 2018
    Inventors: Ziran Zhao, Jianping Gu, Bicheng Liu, Qi Wang, Xi Yi
  • Publication number: 20180182085
    Abstract: The present disclosure discloses an inspection device and a method for inspecting a container. Transmission scanning is performed on the inspected container using a scanning device including a sparse area array detector to obtain scan data. Digital focusing is performed at a specific depth position in a depth direction. Defocused pixel values are filtered out to obtain a slice image at the specific depth position. It is judged whether dangerous articles or suspicious articles are included in the slice image.
    Type: Application
    Filed: November 30, 2017
    Publication date: June 28, 2018
    Inventors: Ziran Zhao, Jianping Gu, Qian Yi, Bicheng Liu
  • Publication number: 20180153493
    Abstract: The present disclosure provides a method for recognizing an article using a multi-energy spectrum X-ray imaging system and a multi-energy spectrum X-ray imaging system. The method comprises: recognizing an application scenario and/or priori information of the article; selecting a parameter mode suitable for the article from a plurality of parameter modes stored in the multi-energy spectrum X-ray imaging system based on the recognized application scenario and/or priori information; and recognizing the article using the selected parameter mode, wherein the plurality of parameter modes are obtained by optimizing system parameters of the multi-energy spectrum X-ray imaging system under a specific condition using a training sample library for various articles.
    Type: Application
    Filed: September 29, 2017
    Publication date: June 7, 2018
    Inventors: Guangming XU, Bicheng LIU, Ziran ZHAO, Lan ZHANG, Jianping GU
  • Publication number: 20180156741
    Abstract: Inspection devices and inspection methods are disclosed. The inspection method includes: performing X-ray scanning on an object being inspected so as to generate an image of the object being inspected; dividing the image of the object being inspected to determine at least one region of interest; detecting interaction between a cosmic ray and the region of interest to obtain a detection value; calculating a scattering characteristic value and/or an absorption characteristic value of the cosmic ray in the region of interest based on size information of the region of interest and the detection value; and discriminating a material attribute of the region of interest by means of the scattering characteristic value and/or the absorption characteristic value. With the above technical solutions, inspection accuracy and inspection efficiency may be improved.
    Type: Application
    Filed: September 27, 2017
    Publication date: June 7, 2018
    Inventors: Kejun Kang, Jianping Cheng, Zhiqiang Chen, Ziran Zhao, Junli Li, Xuewu Wang, Zhi Zeng, Ming Zeng, Yi Wang, Qingjun Zhang, Jianping Gu, Xi Yi, Bicheng Liu, Guangming Xu, Yongqiang Wang
  • Publication number: 20180062021
    Abstract: There is provided a semiconductor detector. According to an embodiment, the semiconductor detector may include a semiconductor detection material including a first side and a second side opposite to each other. One of the first side and the second side is a ray incident side that receives incident rays. The detector may further include a plurality of pixel cathodes disposed on the first side and a plurality of pixel anodes disposed on the second side. The pixel anodes and the pixel cathodes correspond to each other one by one. The detector may further include a barrier electrode disposed on a periphery of respective one of the pixel cathodes or pixel anodes on the ray incident side. According to the embodiment of the present disclosure, it is possible to effectively suppress charge sharing between the pixels and thus to improve an imaging resolution of the detector.
    Type: Application
    Filed: June 16, 2017
    Publication date: March 1, 2018
    Inventors: Lan ZHANG, Yingshuai DU, Bo LI, Zonggui WU, Jun LI, Xuepeng CAO, Haifan HU, Jianping GU, Guangming XU, Bicheng LIU
  • Publication number: 20180059261
    Abstract: The present disclosure provides a semiconductor detector. The semiconductor detector comprises: a detector crystal including a crystal body, an anode and a cathode; a field enhance electrode for applying a voltage to the detector crystal; an insulating material disposed between the field enhanced electrode and a surface of the detector crystal. The semiconductor detector further comprises a field enhanced electrode circuit board having a bottom connection layer in contact with the surface of the detector crystal and a top layer opposite to the bottom connection layer, wherein the top layer is connected to a high voltage input terminal of the semiconductor detector, and an insulating material is provided between the bottom connection layer and the detector surface of the detector crystal.
    Type: Application
    Filed: May 26, 2017
    Publication date: March 1, 2018
    Inventors: Lan Zhang, Yingshuai Du, Bo Li, Zonggui Wu, Jun Li, Xuepeng Cao, Haifan Hu, Jianping Gu, Guangming Xu, Bicheng Liu
  • Publication number: 20180059262
    Abstract: A semiconductor may include a semiconductor detection material including a first side and a second side opposite to each other, a cathode disposed on the first side, and an anode disposed on the second side. The anode includes an array of pixel anodes defining detection pixels of the semiconductor detector, and intermediate anodes disposed between adjacent ones of the pixel anodes. According to an embodiment of the present disclosure, it is possible to achieve signal correction to improve the energy resolution and the signal-to-noise ratio of the detector.
    Type: Application
    Filed: May 31, 2017
    Publication date: March 1, 2018
    Inventors: Lan ZHANG, Yingshuai Du, Bo Li, Zonggui Wu, Jun Li, Xuepeng Cao, Haifan Hu, Jianping Gu, Guangming Xu, Bicheng Liu
  • Publication number: 20180059265
    Abstract: A semiconductor detector and a packaging method thereof. The semiconductor detector includes: a cathode circuit board including a read out chip, a high voltage side top layer of the cathode circuit board, a bottom connection layer of the cathode circuit board and a dielectric filled between the high voltage side top layer and the bottom connection layer, wherein the high voltage side top layer is connected to the bottom connection layer through a via hole; and a detector crystal including a crystal body, an anode and a cathode, the anode is connected to the read out chip of the cathode circuit board, the high voltage side top layer is connected to an input terminal of the semiconductor detector and the bottom connection layer directly contacts the cathode of the detector crystal to connect the cathode to the cathode circuit board.
    Type: Application
    Filed: May 26, 2017
    Publication date: March 1, 2018
    Inventors: Lan Zhang, Yingshuai Du, Bo Li, Zonggui Wu, Jun Li, Xuepeng Cao, Haifan Hu, Jianping Gu, Guangming Xu, Bicheng Liu
  • Publication number: 20180059264
    Abstract: The disclosure provides a detector, and a detecting system and method for dividing energy regions intelligently.
    Type: Application
    Filed: May 23, 2017
    Publication date: March 1, 2018
    Inventors: Lan Zhang, Yingshuai Du, Bo Li, Zonggui Wu, Jun Li, Xuepeng Cao, Haifan Hu, Jianping Gu, Guangming Xu, Bicheng Liu
  • Publication number: 20180059269
    Abstract: The present disclosure provides an apparatus for processing signals for a plurality of energy regions, and a system and method for detecting radiation of a plurality of energy regions. The apparatus for processing signals for a plurality of energy regions may comprise: a first processor, configured to receive a signal from a detector and process the received signal to generate a gated signal, wherein a turn-on period of the gated signal represents magnitude of the received signal; and a second processor, configured to receive the gated signal from the first processor, and determine one of the plurality of energy regions to which the received signal belongs according to the turn-on period of the gated signal, so as to count signals within the determined energy region.
    Type: Application
    Filed: May 10, 2017
    Publication date: March 1, 2018
    Inventors: Lan Zhang, Yingshuai Du, Bo Li, Zonggui Wu, Jun Li, Xuepeng Cao, Haifan Hu, Jianping Gu, Guangming Xu, Bicheng Liu
  • Publication number: 20170329038
    Abstract: The present application relates to a method, apparatus and system for inspecting an object based on a cosmic ray, pertaining to the technical field of radiometric imaging and safety inspection. The method includes: recording a movement trajectory of an inspected object by using a monitoring device; acquiring information of charged particles in the cosmic ray by using a position-sensitive detector, the information of charged particles comprising trajectory information of the charged particles; performing position coincidence for the movement trajectory and the trajectory information to determine the object; performing trajectory remodeling for the charged particles according to the information of charged particles; and identifying a material inside the moving object according to the trajectory remodeling.
    Type: Application
    Filed: January 20, 2017
    Publication date: November 16, 2017
    Inventors: Kejun KANG, Zhiqiang CHEN, Yuanjing LI, Ziran ZHAO, Junli LI, Xuewu WANG, Yaohong LIU, Zhi ZENG, Jianping GU, Song LIANG, Bicheng LIU, Guangming XU, Yongqiang WANG