Patents by Inventor Bilge Yilmaz

Bilge Yilmaz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210129126
    Abstract: A metal trap for an FCC catalyst include pre-formed microspheres impregnated with a salt of calcium and/or magnesium and an organic acid salt of a rare earth element.
    Type: Application
    Filed: December 14, 2018
    Publication date: May 6, 2021
    Applicant: BASF CORPORATION
    Inventors: Bilge YILMAZ, Gary M. SMITH, Bethany Nicole HARKRIDER
  • Publication number: 20200346189
    Abstract: A metal trap for an FCC catalyst include pre-formed microspheres impregnated with an organic acid salt of a rare earth element.
    Type: Application
    Filed: November 8, 2018
    Publication date: November 5, 2020
    Applicant: BASF Corporation
    Inventors: Gary M. SMITH, Bilge YILMAZ
  • Publication number: 20200224102
    Abstract: A zeolite fluid catalytic cracking catalyst is provided that passivates nickel and vanadium during catalytic cracking. The zeolite fluid catalytic cracking catalyst includes Y-faujasite crystallized in-situ from a metakaolin-containing calcined microsphere. The zeolite fluid catalytic cracking catalyst further includes an alumina-containing matrix obtained by calcination of a dispersible crystalline boehmite and a kaolin contained in the metakaolin-containing calcined microsphere, where the dispersible crystalline boehmite has a crystallite size of less than 500 ?. Also provided are a method of reducing contaminant coke and hydrogen yields and a method of catalytic cracking of heavy hydrocarbon feed stocks.
    Type: Application
    Filed: March 19, 2020
    Publication date: July 16, 2020
    Inventors: Robert McGuire, Gary Smith, Bilge Yilmaz, Sven Serneels
  • Patent number: 10683458
    Abstract: A method of cracking a hydrocarbon feed under fluid catalytic cracking conditions includes adding FCC compatible inorganic particles having a first particle type including one or more boron oxide components and a first matrix component into a FCC unit and adding cracking microspheres having a second particle type including a second matrix component, a phosphorus component and 20% to 95% by weight of a zeolite component into the FCC unit.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: June 16, 2020
    Assignee: BASF CORPORATION
    Inventors: Gary M. Smith, Robert McGuire, Jr., Bilge Yilmaz
  • Patent number: 10633596
    Abstract: A zeolite fluid catalytic cracking catalyst is provided that passivates nickel and vanadium during catalytic cracking. The zeolite fluid catalytic cracking catalyst includes Y-faujasite crystallized in-situ from a metakaolin-containing calcined microsphere. The zeolite fluid catalytic cracking catalyst further includes an alumina-containing matrix obtained by calcination of a dispersible crystalline boehmite and a kaolin contained in the metakaolin-containing calcined microsphere, where the dispersible crystalline boehmite has a crystallite size of less than 500 ?. Also provided are a method of reducing contaminant coke and hydrogen yields and a method of catalytic cracking of heavy hydrocarbon feed stocks.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: April 28, 2020
    Assignee: BASF Corporation
    Inventors: Robert McGuire, Gary M. Smith, Bilge Yilmaz, Sven Serneels
  • Patent number: 10596518
    Abstract: The present invention relates to a process for the production of a zeolitic material having a BEA-type framework structure comprising YO2 and X2O3, wherein said process comprises the steps of (1) preparing a mixture comprising one or more sources for YO2 and one or more sources for X2O3; (2) crystallizing the mixture obtained in step (1); (3) subjecting the zeolitic material having a BEA-type framework structure obtained in step (2) to an ion-exchange procedure with Cu; and (4) subjecting the Cu ion-exchanged zeolitic material obtained in step (3) to an ion-exchange procedure with Fe; wherein Y is a tetravalent element, and X is a trivalent element, wherein the mixture provided in step (1) and crystallized in step (2) further comprises seed crystals comprising one or more zeolitic materials having a BEA-type framework structure, and wherein the mixture provided in step (1) and crystallized in step (2) does not contain an organotemplate as a structure-directing agent, as well as to the zeolitic material having
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: March 24, 2020
    Assignees: BASF SE, TOKYO INSTITUTE OF TECHNOLOGY
    Inventors: Mathias Feyen, Stefan Maurer, Ulrich Mueller, Xinhe Bao, Weiping Zhang, Dirk De Vos, Hermann Gies, Feng-Shou Xiao, Toshiyuki Yokoi, Bilge Yilmaz
  • Patent number: 10556801
    Abstract: The present invention relates to a method for the preparation of a treated zeolitic material having a BEA framework structure including the steps of: (i) providing a zeolitic material having a BEA framework structure, wherein the BEA framework structure includes YO2 and X2O3, wherein Y is a tetravalent element, and X is a trivalent element, and wherein the zeolitic material having a BEA framework structure is obtainable and/or obtained from an organotemplate-free synthetic process; (ii) calcining the zeolitic material provided in step (i) at a temperature of 650° C. or more; and (iii) treating the calcined zeolitic material obtained from step (ii) with an aqueous solution having a pH of 5 or less, as well as to zeolitic materials per se preferably obtainable according to the inventive method and to their use, and to a process for converting oxygenates to olefins employing the inventive zeolitic materials.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: February 11, 2020
    Assignee: BASF SE
    Inventors: Mathias Feyen, Stefan Maurer, Ulrich Mueller, Xinhe Bao, Weiping Zhang, Dirk de Vos, Hermann Gies, Feng-Shou Xiao, Yokoi Toshiyuki, Bilge Yilmaz, Ryoichi Otomo
  • Patent number: 10525451
    Abstract: Described are fluid catalytic cracking (FCC) compositions, methods of manufacture and use. FCC catalyst compositions comprise particles containing a non-zeolitic component and one or more boron oxide components. In embodiments, the FCC catalyst composition contains a zeolite component and optionally a rare earth component and a transition alumina. FCC catalytic compositions may comprise a first particle type containing one or more boron oxide components and a first matrix component mixed with a second particle type containing a second matrix component, and a zeolite. The FCC catalyst compositions can be used to crack hydrocarbon feeds, particularly resid feeds containing high V and Ni, resulting in lower hydrogen and coke yields.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: January 7, 2020
    Assignee: BASF Corporation
    Inventors: Robert McGuire, Jr., Gary M. Smith, Bilge Yilmaz
  • Patent number: 10086367
    Abstract: Described are fluid catalytic cracking (FCC) compositions, methods of manufacture and use. FCC catalyst compositions comprise catalytic microspheres containing a zeolite, a non-zeolitic component, and a rare earth component. The microspheres are modified with phosphorus. The FCC catalyst composition can be used to crack hydrocarbon feeds, particularly resid feeds containing high V and Ni, resulting in lower hydrogen and coke yields.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: October 2, 2018
    Assignee: BASF CORPORATION
    Inventors: Gary M. Smith, Robert McGuire, Jr., Bilge Yilmaz
  • Publication number: 20180126365
    Abstract: Described are fluid catalytic cracking (FCC) compositions, methods of manufacture and use. FCC catalyst compositions comprise particles containing a non-zeolitic component and one or more boron oxide components. In embodiments, the FCC catalyst composition contains a zeolite component and optionally a rare earth component and a transition alumina. FCC catalytic compositions may comprise a first particle type containing one or more boron oxide components and a first matrix component mixed with a second particle type containing a second matrix component, and a zeolite. The FCC catalyst compositions can be used to crack hydrocarbon feeds, particularly resid feeds containing high V and Ni, resulting in lower hydrogen and coke yields.
    Type: Application
    Filed: January 3, 2018
    Publication date: May 10, 2018
    Inventors: Robert McGuire, JR., Gary M. Smith, Bilge Yilmaz
  • Patent number: 9895680
    Abstract: Described are fluid catalytic cracking (FCC) compositions, methods of manufacture and use. FCC catalyst compositions comprise particles containing a non-zeolitic component and one or more boron oxide components. In embodiments, the FCC catalyst composition contains a zeolite component and optionally a rare earth component and a transition alumina. FCC catalytic compositions may comprise a first particle type containing one or more boron oxide components and a first matrix component mixed with a second particle type containing a second matrix component, and a zeolite. The FCC catalyst compositions can be used to crack hydrocarbon feeds, particularly resid feeds containing high V and Ni, resulting in lower hydrogen and coke yields.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: February 20, 2018
    Assignee: BASF CORPORATION
    Inventors: Robert McGuire, Jr., Gary M. Smith, Bilge Yilmaz
  • Publication number: 20180022611
    Abstract: The present invention relates to a method for the preparation of a treated zeolitic material having a BEA framework structure comprising the steps of: (i) providing a zeolitic material having a BEA framework structure, wherein the BEA framework structure comprises YO2 and X2O3, wherein Y is a tetravalent element, and X is a trivalent element, and wherein the zeolitic material having a BEA framework structure is obtainable and/or obtained from an organotemplate-free synthetic process; (ii) calcining the zeolitic material provided in step (i) at a temperature of 650° C. or more; and (iii) treating the calcined zeolitic material obtained from step (ii) with an aqueous solution having a pH of 5 or less, as well as to zeolitic materials per se preferably obtainable according to the inventive method and to their use, and to a process for converting oxygenates to olefins employing the inventive zeolitic materials.
    Type: Application
    Filed: February 11, 2016
    Publication date: January 25, 2018
    Inventors: Mathias Feyen, Stefan Maurer, Ulrich Mueller, Xinhe Bao, Weiping Zhang, Dirk de Vos, Hermann Gies, Feng-Shou Xiao, Yokoi Toshiyuki, Bilge Yilmaz, Ryoichi Otomo
  • Publication number: 20180010054
    Abstract: A method of cracking a hydrocarbon feed under fluid catalytic cracking conditions includes adding FCC compatible inorganic particles having a first particle type including one or more boron oxide components and a first matrix component into a FCC unit and adding cracking microspheres having a second particle type including a second matrix component, a phosphorus component and 20% to 95% by weight of a zeolite component into the FCC unit.
    Type: Application
    Filed: September 18, 2017
    Publication date: January 11, 2018
    Inventors: Gary M. Smith, Robert McGuire, JR., Bilge Yilmaz
  • Publication number: 20170362513
    Abstract: A zeolite fluid catalytic cracking catalyst is provided that passivates nickel and vanadium during catalytic cracking. The zeolite fluid catalytic cracking catalyst includes Y-faujasite crystallized in-situ from a metakaolin-containing calcined microsphere. The zeolite fluid catalytic cracking catalyst further includes an alumina-containing matrix obtained by calcination of a dispersible crystalline boehmite and a kaolin contained in the metakaolin-containing calcined microsphere, where the dispersible crystalline boehmite has a crystallite size of less than 500 ?. Also provided are a method of reducing contaminant coke and hydrogen yields and a method of catalytic cracking of heavy hydrocarbon feed stocks.
    Type: Application
    Filed: September 13, 2016
    Publication date: December 21, 2017
    Inventors: Robert McGuire, Gary M. Smith, Bilge Yilmaz, Sven Serneels
  • Patent number: 9821300
    Abstract: The invention relates to a process for producing a particulate, Si-bonded fluidized-bed catalyst having improved abrasion resistance, which comprises the steps I. provision of an aqueous suspension comprising zeolite particles, II. addition of a silicone resin mixture comprising one or more hydrolyzable silicone resin precondensates and mixing of the aqueous suspension and the silicone resin mixture, III. spray drying of the mixture obtained from step II, with the mixture being homogenized before spray drying, and IV. calcination of the spray-dried fluidized-bed catalyst obtained from step III, and an Si-bonded fluidized-bed catalyst which can be produced by this process and also its use for the nonoxidative dehydroaromatization of C1-C4-aliphatics.
    Type: Grant
    Filed: September 21, 2016
    Date of Patent: November 21, 2017
    Assignee: BASF SE
    Inventors: Joana Coelho Tsou, Sebastian Ahrens, Christian Schneider, Thomas Heidemann, Bilge Yilmaz, Robert Bayer, Michael Schlei, Sebastian Kranz
  • Patent number: 9796932
    Abstract: Described are fluid catalytic cracking (FCC) compositions, methods of manufacture and use. FCC catalyst compositions comprise particles first particle type comprising one or more boron oxide components and a first matrix component and a second particle type having a composition different from the first particle type, the second particle type comprising a second matrix component, a phosphorus component and 20% to 95% by weight of a zeolite component. The FCC catalyst compositions can be used to crack hydrocarbon feeds, particularly resid feeds containing high V and Ni, resulting in lower hydrogen and coke yields.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: October 24, 2017
    Assignee: BASF CORPORATION
    Inventors: Gary M. Smith, Robert McGuire, Jr., Bilge Yilmaz
  • Patent number: 9670415
    Abstract: The present invention relates to a process for the preparation of a zeolitic material having a structure comprising YO2 and optionally comprising X2O3, preferably comprising YO2 and X2O3, wherein said process comprises the steps of (1) providing a mixture comprising one or more ammonium compounds of which the ammonium cation has the formula (I): [R1R2NR3R4]+??(I) and further comprising one or more sources for YO2 and one or more sources for X2O3; (2) crystallizing the mixture provided in (1); wherein Y is a tetravalent element, and X is a trivalent element, and wherein in formula (I) R1 and R2 are independently from one another derivatized or underivatized methyl, and R3 and R4 are independently from one another derivatized or underivatized (C3-C5)alkyl, and wherein the molar ratio of ammonium cation having the formula (I) to Y in the mixture provided in step (1) and crystallized in step (2) is equal to or greater than 0.25.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: June 6, 2017
    Assignee: BASF SE
    Inventors: Bilge Yilmaz, Ulrich Berens, Vijay Narayanan Swaminathan, Ulrich Müller, Gabriele Iffland, Laszlo Szarvas
  • Publication number: 20170144137
    Abstract: Described are fluid catalytic cracking (FCC) compositions, methods of manufacture and use. FCC catalyst compositions comprise catalytic microspheres containing a zeolite, a non-zeolitic component, and a rare earth component. The microspheres are modified with phosphorus. The FCC catalyst composition can be used to crack hydrocarbon feeds, particularly resid feeds containing high V and Ni, resulting in lower hydrogen and coke yields.
    Type: Application
    Filed: February 7, 2017
    Publication date: May 25, 2017
    Inventors: Gary M. Smith, Robert McGuire, JR., Bilge Yilmaz
  • Publication number: 20170007989
    Abstract: The invention relates to a process for producing a particulate, Si-bonded fluidized-bed catalyst having improved abrasion resistance, which comprises the steps I. provision of an aqueous suspension comprising zeolite particles, II. addition of a silicone resin mixture comprising one or more hydrolyzable silicone resin precondensates and mixing of the aqueous suspension and the silicone resin mixture, III. spray drying of the mixture obtained from step II, with the mixture being homogenized before spray drying, and IV. calcination of the spray-dried fluidized-bed catalyst obtained from step III, and an Si-bonded fluidized-bed catalyst which can be produced by this process and also its use for the nonoxidative dehydroaromatization of C1-C4-aliphatics.
    Type: Application
    Filed: September 21, 2016
    Publication date: January 12, 2017
    Applicant: BASF SE
    Inventors: Joana Coelho Tsou, Sebastian Ahrens, Christian Schneider, Thomas Heidemann, Bilge Yilmaz, Robert Bayer, Michael Schlei, Sebastian Kranz
  • Patent number: 9517461
    Abstract: Described is an iron-containing zeolite wherein the number of iron sites, based on the zeolite, is greater than the number of cationic positions in the zeolite. Also described is an iron-containing zeolite preparable by gas phase reaction with iron pentacarbonyl, said zeolite having a greater specific surface area than iron-containing zeolites prepared analogously by ion exchange and/or being more hydrothermally stable than iron-containing zeolites prepared analogously by ion exchange, or wherein the number of iron clusters larger than 10 nm is less than 15% by weight, based on the total amount of iron. Further described is a process for preparing an iron-containing zeolitic material, which comprises doping with iron by means of a gas phase reaction using iron pentacarbonyl. Further described is a process for catalytic reduction of nitrogen oxides using catalysts comprising said iron-containing zeolitic materials.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: December 13, 2016
    Assignee: BASF SE
    Inventors: Dirk A. Grossschmidt, Bilge Yilmaz, Dirk Klingler, Bernd Zoels