Patents by Inventor Billy C. Hornbuckle

Billy C. Hornbuckle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230302531
    Abstract: A nano-structured alloy material includes a nanoparticle; a matrix phase surrounding the nanoparticle; and an alkali/alkali Earth metal to alter (i) a material property of the nanoparticle, (ii) a material property of the matrix phase, and (iii) an interaction of the nanoparticle with the matrix phase.
    Type: Application
    Filed: March 22, 2022
    Publication date: September 28, 2023
    Inventors: Kristopher A. Darling, Billy C. Hornbuckle, Blake P. Fullenwider, Albert M. Ostlind, Anthony J. Roberts, Anit K. Giri
  • Publication number: 20230279525
    Abstract: A sintered cemented carbide body including tungsten carbide, and a substantially cobalt-free binder including an iron-based alloy sintered with the tungsten carbide. The iron-based alloy is approximately 2-25% of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may be approximately 90 wt % and the iron-based alloy may be approximately 10 wt % of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may comprise a substantially same size before and after undergoing sintering. The iron-based alloy may be sintered with the tungsten carbide using a uniaxial hot pressing process, a spark plasma sintering process, or a pressureless sintering process. The sintered tungsten carbide and iron-based alloy has a hardness value of at least 15 GPa and a fracture toughness value of at least 11 MPa?m.
    Type: Application
    Filed: August 12, 2022
    Publication date: September 7, 2023
    Inventors: John J. PITTARI, III, Steven M. Kilczewski, Jeffrey J. Swab, Kristopher A. Darling, Billy C. Hornbuckle, Heather A. Murdoch, Robert J. Dowding
  • Publication number: 20230279565
    Abstract: A dissolvable engineered component fabricated using an aluminum-based nanogalvanic alloy and a method of manufacturing such a dissolvable engineered component.
    Type: Application
    Filed: March 2, 2022
    Publication date: September 7, 2023
    Inventors: THOMAS L. LUCKENBAUGH, Anthony J. Roberts, Billy C. Hornbuckle, Anit K. Giri, Kristopher A. Darling
  • Publication number: 20230272539
    Abstract: A method and apparatus for generating hydrogen gas by reacting a nanogalvanic alloy with water vapor. The apparatus comprises a water vapor source for supplying water vapor to a reaction chamber containing a nanogalvanic alloy. The nanogalvanic alloy reacts with the water vapor to produce hydrogen.
    Type: Application
    Filed: February 28, 2022
    Publication date: August 31, 2023
    Inventors: Anthony J. Roberts, Anit K. Giri, Billy C. Hornbuckle, Kristopher A. Darling
  • Patent number: 11725262
    Abstract: A sintered cemented carbide body including tungsten carbide, and a substantially cobalt-free binder including an iron-based alloy sintered with the tungsten carbide. The iron-based alloy is approximately 2-25% of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may be approximately 90 wt % and the iron-based alloy may be approximately 10 wt % of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may comprise a substantially same size before and after undergoing sintering. The iron-based alloy may be sintered with the tungsten carbide using a uniaxial hot pressing process, a spark plasma sintering process, or a pressureless sintering process. The sintered tungsten carbide and iron-based alloy has a hardness value of at least 15 GPa and a fracture toughness value of at least 11 MPa?m.
    Type: Grant
    Filed: August 12, 2022
    Date of Patent: August 15, 2023
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: John J. Pittari, III, Steven M. Kilczewski, Jeffrey J. Swab, Kristopher A. Darling, Billy C. Hornbuckle, Heather A. Murdoch, Robert J. Dowding
  • Publication number: 20230160042
    Abstract: A sintered cemented carbide body including tungsten carbide, and a substantially cobalt-free binder including an iron-based alloy sintered with the tungsten carbide. The iron-based alloy is approximately 2-25% of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may be approximately 90 wt % and the iron-based alloy may be approximately 10 wt % of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may comprise a substantially same size before and after undergoing sintering. The iron-based alloy may be sintered with the tungsten carbide using a uniaxial hot pressing process, a spark plasma sintering process, or a pressureless sintering process. The sintered tungsten carbide and iron-based alloy has a hardness value of at least 15 GPa and a fracture toughness value of at least 11 MPa?m.
    Type: Application
    Filed: August 12, 2022
    Publication date: May 25, 2023
    Inventors: John J. PITTARI, III, Steven M. Kilczewski, Jeffrey J. Swab, Kristopher A. Darling, Billy C. Hornbuckle, Heather A. Murdoch, Robert J. Dowding
  • Publication number: 20230002857
    Abstract: Alloys comprised of a refined microstructure, ultrafine or nano scaled, that when reacted with water or any liquid containing water will spontaneously and rapidly produce hydrogen at ambient or elevated temperature are described. These metals, termed here as aluminum based nanogalvanic alloys will have applications that include but are not limited to energy generation on demand. The alloys may be composed of primarily aluminum and other metals e.g., tin bismuth, indium, gallium, lead, etc. and/or carbon, and mixtures and alloys thereof. The alloys may be processed by ball milling for the purpose of synthesizing powder feed stocks, in which each powder particle will have the above-mentioned characteristics. These powders can be used in their inherent form or consolidated using commercially available techniques for the purpose of manufacturing useful functional components.
    Type: Application
    Filed: September 7, 2022
    Publication date: January 5, 2023
    Inventors: Billy C. Hornbuckle, Anthony J. Roberts, Thomas L. Luckenbaugh, Anit K. Giri, Kristopher A. Darling
  • Patent number: 11434549
    Abstract: A sintered cemented carbide body including tungsten carbide, and a substantially cobalt-free binder including an iron-based alloy sintered with the tungsten carbide. The iron-based alloy is approximately 2-25% of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may be approximately 90 wt % and the iron-based alloy may be approximately 10 wt % of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may comprise a substantially same size before and after undergoing sintering. The iron-based alloy may be sintered with the tungsten carbide using a uniaxial hot pressing process, a spark plasma sintering process, or a pressureless sintering process. The sintered tungsten carbide and iron-based alloy has a hardness value of at least 15 GPa and a fracture toughness value of at least 11 MPa?m.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: September 6, 2022
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: John J. Pittari, III, Steven M. Kilczewski, Jeffrey J. Swab, Kristopher A. Darling, Billy C. Hornbuckle, Heather A. Murdoch, Robert J. Dowding
  • Patent number: 11198923
    Abstract: Alloys comprised of a refined microstructure, ultrafine or nano scaled, that when reacted with water or any liquid containing water will spontaneously and rapidly produce hydrogen at ambient or elevated temperature are described. These metals, termed here as aluminum based nanogalvanic alloys will have applications that include but are not limited to energy generation on demand. The alloys may be composed of primarily aluminum and other metals e.g. tin bismuth, indium, gallium, lead, etc. and/or carbon, and mixtures and alloys thereof. The alloys may be processed by ball milling for the purpose of synthesizing powder feed stocks, in which each powder particle will have the above mentioned characteristics. These powders can be used in their inherent form or consolidated using commercially available techniques for the purpose of manufacturing useful functional components.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: December 14, 2021
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Anit K. Giri, Anthony J. Roberts, Billy C. Hornbuckle, Scott M. Grendahl, Kristopher A. Darling
  • Publication number: 20200024702
    Abstract: A sintered cemented carbide body including tungsten carbide, and a substantially cobalt-free binder including an iron-based alloy sintered with the tungsten carbide. The iron-based alloy is approximately 2-25% of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may be approximately 90 wt % and the iron-based alloy may be approximately 10 wt % of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may comprise a substantially same size before and after undergoing sintering. The iron-based alloy may be sintered with the tungsten carbide using a uniaxial hot pressing process, a spark plasma sintering process, or a pressureless sintering process. The sintered tungsten carbide and iron-based alloy has a hardness value of at least 15 GPa and a fracture toughness value of at least 11 MPa?m.
    Type: Application
    Filed: September 30, 2019
    Publication date: January 23, 2020
    Inventors: John J. Pittari, III, Steven M. Kilczewski, Jeffrey J. Swab, Kristopher A. Darling, Billy C. Hornbuckle, Heather A. Murdoch, Robert J. Dowding
  • Publication number: 20200024689
    Abstract: Alloys comprised of a refined microstructure, ultrafine or nano scaled, that when reacted with water or any liquid containing water will spontaneously and rapidly produce hydrogen at ambient or elevated temperature are described. These metals, termed here as aluminum based nanogalvanic alloys will have applications that include but are not limited to energy generation on demand. The alloys may be composed of primarily aluminum and other metals e.g. tin bismuth, indium, gallium, lead, etc. and/or carbon, and mixtures and alloys thereof. The alloys may be processed by ball milling for the purpose of synthesizing powder feed stocks, in which each powder particle will have the above mentioned characteristics. These powders can be used in their inherent form or consolidated using commercially available techniques for the purpose of manufacturing useful functional components.
    Type: Application
    Filed: September 23, 2019
    Publication date: January 23, 2020
    Inventors: Anit K. Giri, Anthony J. Roberts, Billy C. Hornbuckle, Scott M. Grendahl, Kristopher A. Darling
  • Publication number: 20190024216
    Abstract: Alloys comprised of a refined microstructure, ultrafine or nano scaled, that when reacted with water or any liquid containing water will spontaneously and rapidly produce hydrogen at ambient or elevated temperature are described. These metals, termed here as aluminum based nanogalvanic alloys will have applications that include but are not limited to energy generation on demand. The alloys may be composed of primarily aluminum and other metals e.g. tin bismuth, indium, gallium, lead, etc. and/or carbon, and mixtures and alloys thereof. The alloys may be processed by ball milling for the purpose of synthesizing powder feed stocks, in which each powder particle will have the above mentioned characteristics. These powders can be used in their inherent form or consolidated using commercially available techniques for the purpose of manufacturing useful functional components.
    Type: Application
    Filed: July 23, 2018
    Publication date: January 24, 2019
    Inventors: Anit K. Giri, Anthony J. Roberts, Billy C. Hornbuckle, Scott M. Grendahl, Kristopher A. Darling
  • Publication number: 20180142331
    Abstract: A sintered cemented carbide body including tungsten carbide, and a substantially cobalt-free binder including an iron-based alloy sintered with the tungsten carbide. The iron-based alloy is approximately 2-25 % of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may be approximately 90 wt % and the iron-based alloy may be approximately 10 wt % of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may comprise a substantially same size before and after undergoing sintering. The iron-based alloy may be sintered with the tungsten carbide using a uniaxial hot pressing process, a spark plasma sintering process, or a pressureless sintering process. The sintered tungsten carbide and iron-based alloy has a hardness value of at least 15 GPa and a fracture toughness value of at least 11 MPa?m.
    Type: Application
    Filed: November 9, 2017
    Publication date: May 24, 2018
    Inventors: John J. Pittari, III, Steven M. Kilczewski, Jeffrey J. Swab, Kristopher A. Darling, Billy C. Hornbuckle, Heather A. Murdoch, Robert J. Dowding