Patents by Inventor Bing Hao
Bing Hao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20220196925Abstract: An optical ferrule includes at least one light affecting element configured to affect one or more characteristics of light from an optical waveguide as the light propagates in the optical ferrule, the light affecting element having an input surface. At least one receiving element receives and secures the optical wave guide to the ferrule so that an output surface of the waveguide is optically coupled to the input surface of the light affecting element. A waveguide stop limits movement of the wave guide toward the input surface of the light affecting element when the optical waveguide is installed in the receiving element. A space between the output surface of the optical waveguide and the input surface of the light affecting element is inaccessible to the optical waveguide when the optical waveguide is installed in the receiving element.Type: ApplicationFiled: March 14, 2022Publication date: June 23, 2022Inventors: Michael A. Haase, Terry L. Smith, Bing Hao, Changbao Ma
-
Publication number: 20220146760Abstract: An optical connector assembly (100) includes a housing (110), an optical ferrule (140); and an optical fiber array (150). The housing (110) has a mating end (111) and an opposite cable end (112) and includes: a first housing portion (120) including a front support (122) proximate the mating end (111) and a rear support (124) disposed between the front support (122) and the cable end (112); and a second housing portion (130) assembled to the first housing portion (120) and including a middle support (133) disposed between the front and rear supports (122,124). The ferrule (140) is supported by the front support (122). Front ends of optical fibers of the optical fiber array (150) are received by and attached to an attachment area of the ferrule (140). When the second housing portion (130) is assembled to the first housing portion (120), the middle support (133) of the second housing portion (130) contacts and bends the optical fiber array (150) about the middle support (133).Type: ApplicationFiled: March 26, 2019Publication date: May 12, 2022Inventors: Cheng Tang, Shiwen Chen, Changbao Ma, Bing Hao, Boon K. Lee
-
Patent number: 11307362Abstract: An optical ferrule includes at least one light affecting element configured to affect one or more characteristics of light from an optical waveguide as the light propagates in the optical ferrule, the light affecting element having an input surface. At least one receiving element receives and secures the optical waveguide to the ferrule so that an output surface of the waveguide is optically coupled to the input surface of the light affecting element. A waveguide stop limits movement of the waveguide toward the input surface of the light affecting element when the optical waveguide is installed in the receiving element. A space between the output surface of the optical waveguide and the input surface of the light affecting element is inaccessible to the optical waveguide when the optical waveguide is installed in the receiving element.Type: GrantFiled: October 3, 2016Date of Patent: April 19, 2022Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Michael A. Haase, Terry L. Smith, Bing Hao, Changbao Ma
-
Publication number: 20220082770Abstract: The present disclosure provides a photonic integrated circuit chip. The photonic integrated circuit chip comprises a plurality of connection ports, multiple polarization beam splitting structures, a photodetector structure, an interleaver and a modulator. The plurality of connection ports are used to receive a plurality of first optical signals to the photonic integrated circuit chip. The multiple polarization beam splitting structures each are used to split the first optical signal passing through the polarization beam splitting structure into a first mode optical signal and a second mode optical signal. The photodetector structure comprises a first component for split beam and a second component for split beam. The interleaver is used to transfer the first mode optical signal or the second mode optical signal to the second component for split beam. The modulator is used to transfer second optical signals with different wavelengths to the interleaver.Type: ApplicationFiled: September 3, 2021Publication date: March 17, 2022Applicant: Molex, LLCInventors: Li-Chi YANG, Bing-Hao SHIH, Chih-Chung WU, Zuon-Min CHUANG
-
Patent number: 11125406Abstract: The present disclosure provides lamination transfer films and use of the lamination transfer films, particular in the fabrication of architectural glass elements, such as those used in Insulated Glass Units (IGUs). The lamination transfer films may be used to transfer functional layers and structures. The lamination transfer films may include a support film that can be removed during the transfer process, and the transferred materials are primarily inorganic. The resulting transferred structures on glass generally have high photo- and thermal-stability, and therefore can successfully be applied to the glass surfaces that are interior to the cavity within an IGU. The lamination transfer films can also be patterned such that macroscopic patterns of microoptical elements can be applied on a glass surface.Type: GrantFiled: January 23, 2020Date of Patent: September 21, 2021Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Michael Benton Free, Martin B. Wolk, Olester Benson, Jr., Bing Hao, Charles A. Marttila, Craig R. Schardt, Mieczyslaw H. Mazurek, Justin P. Meyer, Manoj Nirmal
-
Patent number: 11099331Abstract: An optical adaptor for inspection of a desired surface of an optical ferrule is provided. The optical ferrule is disposed in, and has a first position relative to, a housing of the optical ferrule. The optical adaptor includes a front portion including an open front end for insertion into the housing of the optical ferrule from an open mating end of the housing and for receiving at least a portion of the desired surface of the optical ferrule. The front portion includes a receiving surface for receiving at least a portion of the optical ferrule and causing the optical ferrule to change its position from the first position to a different second position. An image forming surface forms an image of the desired surface of the optical ferrule, thereby allowing a viewing of the optical ferrule from an open rear end of the optical adaptor.Type: GrantFiled: June 3, 2020Date of Patent: August 24, 2021Assignee: 3M Innovative Properties CompanyInventors: Boon K. Lee, Alberto DeLosSantos, Bing Hao
-
Publication number: 20210255397Abstract: An optical waveguide propagates an optical mode at a first wavelength along a length of the waveguide. The optical waveguide has an optical core with a substantially polygonal cross-section in a plane substantially perpendicular to the length of the waveguide. The optical core has an index of refraction n1 at the first wavelength. A first optical cladding is disposed adjacent the optical core and has an index of refraction n2 at the first wavelength, n2<n1. A spatially modulated index region has alternating higher and lower index regions extending along a width, and arranged along the length, of the optical waveguide, and configured to extract an optical mode that would otherwise propagate along the length of the waveguide.Type: ApplicationFiled: June 25, 2019Publication date: August 19, 2021Inventors: Bing Hao, Michael A. Haase, Terry L. Smith
-
Publication number: 20210215891Abstract: An optical ferrule comprises first and second compound stop features respectively disposed at opposing sides of the optical ferrule. Each compound stop feature has upper and lower contact surfaces. The lower contact surface is offset below the mating surface of the optical ferrule along a thickness axis perpendicular to the mating surface. The upper contact surface is offset above the mating surface along the thickness axis. The lower contact surface is offset forward from the upper stop surface along a mating direction of the optical ferrule. A connecting surface connects the upper contact surface and the lower contact surface.Type: ApplicationFiled: June 25, 2019Publication date: July 15, 2021Inventors: Michael A. Haase, Bing Hao
-
Publication number: 20210215884Abstract: A light coupling element including a groove and a light redirecting member is described. The groove is for receiving and aligning an optical waveguide and incudes an open front end and a back end. The light redirecting member includes an input side for receiving light from an optical waveguide received and supported in the groove and a light redirecting side for changing a direction of light received from the input side. The groove may include a bottom surface extending between the front and back ends of the groove and including a raised bottom surface portion raised upwardly relative to an unraised bottom surface portion. The unraised bottom surface portion of the bottom surface may be disposed between the raised bottom surface portion of the bottom surface and the input side of the light redirecting member. Optical coupling assemblies including the light coupling element and an optical waveguide are described.Type: ApplicationFiled: June 25, 2019Publication date: July 15, 2021Inventors: Michael A. Haase, Bing Hao, Changbao Ma, Terry L. Smith
-
Patent number: 10988979Abstract: The present disclosure provides lamination transfer films and use of the lamination transfer films, particular in the fabrication of architectural glass elements, such as those used in Insulated Glass Units (IGUs). The lamination transfer films may be used to transfer functional layers and structures. The lamination transfer films may include a support film that can be removed during the transfer process, and the transferred materials are primarily inorganic. The resulting transferred structures on glass generally have high photo- and thermal-stability, and therefore can successfully be applied to the glass surfaces that are interior to the cavity within an IGU. The lamination transfer films can also be patterned such that macroscopic patterns of microoptical elements can be applied on a glass surface.Type: GrantFiled: August 28, 2020Date of Patent: April 27, 2021Assignee: 3M Innovative Properties CompanyInventors: Michael Benton Free, Martin B. Wolk, Olester Benson, Jr., Bing Hao, Charles A. Marttila, Craig R. Schardt, Mieczyslaw H. Mazurek, Justin P. Meyer, Manoj Nirmal
-
Patent number: 10989881Abstract: An optical connector includes a housing with a bottom wall defining a window therein, and an optical ferrule disposed in the housing and comprising opposing major top and bottom surfaces. The major bottom surface of the optical ferrule faces the bottom wall of the housing. The major top surface includes a groove and a light redirecting surface configured to receive light along a first direction from an optical fiber received and secured in the groove, and redirect the received light along a different second direction. The redirected light exits the optical ferrule though the bottom surface and exits the housing through the window, such that, when the optical connector mates with a mating optical connector including a mating optical ferrule, the mating optical ferrule prevents any of the light exiting the optical ferrule from exiting the housing of the optical connector.Type: GrantFiled: February 20, 2020Date of Patent: April 27, 2021Assignee: 3M Innovative Properties CompanyInventors: Changbao Ma, Boon K. Lee, Bing Hao, Stephen Paul LeBlanc
-
Publication number: 20210103098Abstract: A light coupling unit for use in an optical connector includes a waveguide alignment member that receives and aligns at least one optical waveguide. The light coupling unit includes a light redirecting member that has an input surface configured to receive input light from the end face of the optical waveguide. A curved reflective surface of the light redirecting member receives light from the input surface propagating along an input axis and redirects the light such that the redirected light propagates along a different redirected axis. An output surface of the light redirecting member receives the redirected light and transmits the redirected light as output light propagating along an output axis and exiting the light redirecting member. A curved intersection of the curved reflective surface and a first plane formed by the input and redirected axes has a radius of curvature. The curved reflective surface has an axis of revolution disposed in the first plane.Type: ApplicationFiled: March 1, 2019Publication date: April 8, 2021Inventors: Michael A. Haase, Bing Hao
-
Publication number: 20210098546Abstract: An OLED display including a display panel and a color-correction component is described. A plurality of comparative display panels otherwise equivalent to the display panel but having one or more different optical thicknesses of OLED layers have a maximum white-point color shift from 0 to 45 degrees of WPCSC45 and a white-point axial efficiency of WPAEC. The plurality of comparative display panels defines a performance curve along a boundary of performance points. The OLED display and the display panel have respective maximum white-point color shifts from 0 to 45 degrees of WPCS45 and WPCS045 and respective white-point axial efficiencies of WPAE and WPAE0. WPCS045 and WPAE0 defines a performance point of the display panel to the right of the performance curve and WPCS45 and WPAE defines a performance point of the OLED display above or to the left of the performance curve. Methods of making the OLED display are described.Type: ApplicationFiled: April 9, 2019Publication date: April 1, 2021Inventors: Nicholas C. Erickson, David G. Freier, Robert L. Brott, Bing Hao, David A. Rosen, Stephen M. Menke, Bert T. Chien, Song Taek Lee, Encai Hao, Zhaohui Yang, Albert I. Everaerts, Yongshang Lu, William Blake Kolb, Keith R. Bruesewitz, Adam D. Haag, Sun-Yong Park, Timothy J. Nevitt (Deceased), Brianna N. Wheeler, Jody L. Peterson, Gilles J. Benoit
-
Publication number: 20210018694Abstract: An optical adaptor for inspection of a desired surface of an optical ferrule is provided. The optical ferrule is disposed in, and has a first position relative to, a housing of the optical ferrule. The optical adaptor includes a front portion including an open front end for insertion into the housing of the optical ferrule from an open mating end of the housing and for receiving at least a portion of the desired surface of the optical ferrule. The front portion includes a receiving surface for receiving at least a portion of the optical ferrule and causing the optical ferrule to change its position from the first position to a different second position. An image forming surface forms an image of the desired surface of the optical ferrule, thereby allowing a viewing of the optical ferrule from an open rear end of the optical adaptor.Type: ApplicationFiled: June 3, 2020Publication date: January 21, 2021Inventors: Boon K. Lee, Alberto DeLosSantos, Bing Hao
-
Publication number: 20210018660Abstract: Described herein is a composition including a polymeric matrix having a first refractive index, and a plurality of particles dispersed therein, wherein each particle within the plurality of particles comprises an inorganic core and polymer chains grafted thereon, wherein the particle has a second refractive index that is different from the first refractive index.Type: ApplicationFiled: December 13, 2018Publication date: January 21, 2021Inventors: Paul B. Armstrong, Bing Hao
-
Publication number: 20200408996Abstract: An inspection device for an optical ferrule includes one or more reflectors. Each reflector has a mating surface and a mirror disposed at an oblique angle with respect to the mating surface. Each reflector is configured to mate with the optical ferrule when the optical ferrule is disposed within a housing of an optical connector. When the mating surface of the reflector is in mated contact with the mating surface of the optical ferrule, the mirror is positioned to provide a reflected view of at least a portion of a mating surface of the optical ferrule.Type: ApplicationFiled: September 9, 2020Publication date: December 31, 2020Inventors: Michael A. Haase, Bing Hao
-
Publication number: 20200392782Abstract: The present disclosure provides lamination transfer films and use of the lamination transfer films, particular in the fabrication of architectural glass elements, such as those used in Insulated Glass Units (IGUs). The lamination transfer films may be used to transfer functional layers and structures. The lamination transfer films may include a support film that can be removed during the transfer process, and the transferred materials are primarily inorganic. The resulting transferred structures on glass generally have high photo- and thermal-stability, and therefore can successfully be applied to the glass surfaces that are interior to the cavity within an IGU. The lamination transfer films can also be patterned such that macroscopic patterns of microoptical elements can be applied on a glass surface.Type: ApplicationFiled: August 28, 2020Publication date: December 17, 2020Inventors: Michael Benton Free, Martin B. Wolk, Olester Benson, JR., Bing Hao, Charles A. Marttila, Craig R. Schardt, Mieczyslaw H. Mazurek, Justin P. Meyer, Manoj Nirmal
-
Patent number: 10802225Abstract: An inspection device for an optical ferrule includes one or more reflectors. Each reflector has a mating surface and a mirror disposed at an oblique angle with respect to the mating surface. Each reflector is configured to mate with the optical ferrule when the optical ferrule is disposed within a housing of an optical connector. When the mating surface of the reflector is in mated contact with the mating surface of the optical ferrule, the mirror is positioned to provide a reflected view of at least a portion of a mating surface of the optical ferrule.Type: GrantFiled: January 2, 2019Date of Patent: October 13, 2020Assignee: 3M Innovative Properties CompanyInventors: Michael A. Haase, Bing Hao
-
Patent number: 10794114Abstract: The present disclosure provides lamination transfer films and use of the lamination transfer films, particular in the fabrication of architectural glass elements, such as those used in Insulated Glass Units (IGUs). The lamination transfer films may be used to transfer functional layers and structures. The lamination transfer films may include a support film that can be removed during the transfer process, and the transferred materials are primarily inorganic. The resulting transferred structures on glass generally have high photo- and thermal-stability, and therefore can successfully be applied to the glass surfaces that are interior to the cavity within an IGU. The lamination transfer films can also be patterned such that macroscopic patterns of microoptical elements can be applied on a glass surface.Type: GrantFiled: November 14, 2019Date of Patent: October 6, 2020Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Michael Benton Free, Martin B. Wolk, Olester Benson, Jr., Bing Hao, Charles A. Marttila, Craig R. Schardt, Mieczyslaw H. Mazurek, Justin P. Meyer, Manoj Nirmal
-
Light redirecting film with multi-peak microstructured prismatic elements and methods of making them
Patent number: 10795061Abstract: Light redirecting film articles include a microstructured optical film, such as a daylight redirecting film, bonded to another film. This type of assembly may serve various purposes. For example, the assembly may protect the structured film, provide additional functionality, such as diffusion or infrared reflection, and/or facilitate attachment of the microstructured optical film to a mounting surface, such as a glazing or window pane.Type: GrantFiled: May 12, 2017Date of Patent: October 6, 2020Assignee: 3M Innovative Properties CompanyInventors: Manoj Nirmal, Scott M. Tapio, Erik A. Aho, Bing Hao, John F. Reed