Patents by Inventor BINGXI WOOD

BINGXI WOOD has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11145761
    Abstract: Embodiments described herein generally relate to methods and device structures for horizontal gate all around (hGAA) isolation and fin field effect transistor (FinFET) isolation. A superlattice structure comprising different materials arranged in an alternatingly stacked formation may be formed on a substrate. In one embodiment, at least one of the layers of the superlattice structure may be oxidized to form a buried oxide layer adjacent the substrate.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: October 12, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Shiyu Sun, Naomi Yoshida, Theresa Kramer Guarini, Sung Won Jun, Vanessa Pena, Errol Antonio C. Sanchez, Benjamin Colombeau, Michael Chudzik, Bingxi Wood, Nam Sung Kim
  • Publication number: 20200035822
    Abstract: Embodiments described herein generally relate to methods and device structures for horizontal gate all around (hGAA) isolation and fin field effect transistor (FinFET) isolation. A superlattice structure comprising different materials arranged in an alternatingly stacked formation may be formed on a substrate. In one embodiment, at least one of the layers of the superlattice structure may be oxidized to form a buried oxide layer adjacent the substrate.
    Type: Application
    Filed: October 3, 2019
    Publication date: January 30, 2020
    Inventors: Shiyu SUN, Naomi YOSHIDA, Theresa Kramer GUARINI, Sung Won JUN, Vanessa PENA, Errol Antonio C. SANCHEZ, Benjamin COLOMBEAU, Michael CHUDZIK, Bingxi WOOD, Nam Sung KIM
  • Patent number: 10490666
    Abstract: Embodiments described herein generally relate to methods and device structures for horizontal gate all around (hGAA) isolation and fin field effect transistor (FinFET) isolation. A superlattice structure comprising different materials arranged in an alternatingly stacked formation may be formed on a substrate. In one embodiment, at least one of the layers of the superlattice structure may be oxidized to form a buried oxide layer adjacent the substrate.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: November 26, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Shiyu Sun, Nam Sung Kim, Naomi Yoshida, Theresa Kramer Guarini, Sung Won Jun, Vanessa Pena, Errol Antonio C. Sanchez, Benjamin Colombeau, Michael Chudzik, Bingxi Wood
  • Patent number: 9865735
    Abstract: Embodiments described herein generally relate to methods and device structures for horizontal gate all around (hGAA) isolation and fin field effect transistor (FinFET) isolation. A superlattice structure comprising different materials arranged in an alternatingly stacked formation may be formed on a substrate. In one embodiment, at least one of the layers of the superlattice structure may be oxidized to form a buried oxide layer adjacent the substrate.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: January 9, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Shiyu Sun, Naomi Yoshida, Theresa Kramer Guarini, Sung Won Jun, Vanessa Pena, Errol Antonio C. Sanchez, Benjamin Colombeau, Michael Chudzik, Bingxi Wood, Nam Sung Kim
  • Publication number: 20160336405
    Abstract: Embodiments described herein generally relate to methods and device structures for horizontal gate all around (hGAA) isolation and fin field effect transistor (FinFET) isolation. A superlattice structure comprising different materials arranged in an alternatingly stacked formation may be formed on a substrate. In one embodiment, at least one of the layers of the superlattice structure may be oxidized to form a buried oxide layer adjacent the substrate.
    Type: Application
    Filed: May 11, 2016
    Publication date: November 17, 2016
    Inventors: Shiyu SUN, Naomi YOSHIDA, Theresa Kramer GUARINI, Sung Won JUN, Vanessa PENA, Errol Antonio C. SANCHEZ, Benjamin COLOMBEAU, Michael CHUDZIK, Bingxi WOOD, Nam Sung KIM
  • Patent number: 9484406
    Abstract: The present disclosure provide methods for forming nanowire structures with desired materials horizontal gate-all-around (hGAA) structures field effect transistor (FET) for semiconductor chips. In one example, a method of forming nanowire structures on a substrate includes supplying an oxygen containing gas mixture to a multi-material layer on a substrate in a processing chamber, wherein the multi-material layer includes repeating pairs of a first layer and a second layer, the first and the second layers having a first group and a second group of sidewalls respectively exposed through openings defined in the multi-material layer, and selectively forming an oxidation layer on the second group of sidewalls in the second layer.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: November 1, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Shiyu Sun, Naomi Yoshida, Bingxi Wood
  • Patent number: 9177815
    Abstract: Methods for chemical mechanical planarization of patterned wafers are provided herein. In some embodiments, methods of processing a substrate having a first surface and a plurality of recesses disposed within the first surface may include: depositing a first material into the plurality of recesses to predominantly fill the plurality of recesses with the first material; depositing a second material different from the first material into the plurality of recesses and atop the substrate to fill the plurality of recesses and to form a layer atop the first surface; and planarizing the second material using a first slurry in a chemical mechanical polishing tool until the first surface is reached. In some embodiments, a second slurry, different than the first slurry, is used to planarize the substrate to a first level.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: November 3, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yi-Chiau Huang, Gregory Menk, Errol Antonio C. Sanchez, Bingxi Wood
  • Patent number: 8999821
    Abstract: Methods of forming a fin structure for a field effect transistor are described. The methods may include the operations of patterning a mandrel on a surface of a substrate, and depositing an epitaxial layer of high-mobility channel material over exposed surfaces of the patterned mandrel. The epitaxial layer leaves a gap between adjacent columns of the patterned mandrel, and a dielectric material may be deposited in the gap between the adjacent columns of the patterned mandrel. The methods may also include planarizing the epitaxial layer to form a planarized epitaxial layer and exposing the columns of the patterned mandrel, and etching at least a portion of the exposed columns of the patterned mandrel and the dielectric material to expose at least a portion of the planarized epitaxial layer that forms the fin structure.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: April 7, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Adam Brand, Bingxi Wood, Errol Sanchez, Yihwan Kim, Yi-Chiau Huang, John Boland
  • Patent number: 8999829
    Abstract: The control of gate widths is improved for system-on-a-chip (SoC) devices which require multiple gate dielectric “gate” thicknesses, e.g., for analog and digital processing on the same chip. A hard mask is formed to protect a thick gate while the thin gate region is etched to remove oxide (sometimes referred to as a preclean step). The patterned substrate is then processed to selectively deposit a second thickness of gate material. The thin gate may be silicon oxide and the physical thickness of the thin gate may be less than that of the thick gate. In a preferred embodiment, the substrate is not exposed to air or atmosphere after the hardmask is removed.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: April 7, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Adam Brand, Bingxi Wood
  • Publication number: 20150050800
    Abstract: Methods of forming a fin structure for a field effect transistor are described. The methods may include the operations of patterning a mandrel on a surface of a substrate, and depositing an epitaxial layer of high-mobility channel material over exposed surfaces of the patterned mandrel. The epitaxial layer leaves a gap between adjacent columns of the patterned mandrel, and a dielectric material may be deposited in the gap between the adjacent columns of the patterned mandrel. The methods may also include planarizing the epitaxial layer to form a planarized epitaxial layer and exposing the columns of the patterned mandrel, and etching at least a portion of the exposed columns of the patterned mandrel and the dielectric material to expose at least a portion of the planarized epitaxial layer that forms the fin structure.
    Type: Application
    Filed: May 5, 2014
    Publication date: February 19, 2015
    Inventors: Adam Brand, Bingxi Wood, Errol Sanchez, Yihwan Kim, Yi-Chiau Huang, John Boland
  • Patent number: 8895432
    Abstract: A method of fabricating a self-aligned buried bit line in a structure which makes up a portion of a vertical channel DRAM. The materials and processes used enable self-alignment of elements of the buried bit line during the fabrication process. In addition, the materials and processes used enable for formation of individual DRAM cells which have a buried bit line width which is 16 nm or less.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: November 25, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Chorng-Ping Chang, Bingxi Wood, Er-Xuan Ping
  • Publication number: 20140113442
    Abstract: The control of gate widths is improved for system-on-a-chip (SoC) devices which require multiple gate dielectric “gate” thicknesses, e.g., for analog and digital processing on the same chip. A hard mask is formed to protect a thick gate while the thin gate region is etched to remove oxide (sometimes referred to as a preclean step). The patterned substrate is then processed to selectively deposit a second thickness of gate material. The thin gate may be silicon oxide and the physical thickness of the thin gate may be less than that of the thick gate. In a preferred embodiment, the substrate is not exposed to air or atmosphere after the hardmask is removed.
    Type: Application
    Filed: September 3, 2013
    Publication date: April 24, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Adam Brand, Bingxi Wood
  • Publication number: 20130320542
    Abstract: A method of fabricating a self-aligned buried bit line in a structure which makes up a portion of a vertical channel DRAM. The materials and processes used enable self-alignment of elements of the buried bit line during the fabrication process. In addition, the materials and processes used enable for formation of individual DRAM cells which have a buried bit line width which is 16 nm or less.
    Type: Application
    Filed: May 8, 2013
    Publication date: December 5, 2013
    Inventors: Chorng-Ping Chang, Bingxi Wood, Er-Xuan Ping
  • Publication number: 20130295752
    Abstract: Methods for chemical mechanical planarization of patterned wafers are provided herein. In some embodiments, methods of processing a substrate having a first surface and a plurality of recesses disposed within the first surface may include: depositing a first material into the plurality of recesses to predominantly fill the plurality of recesses with the first material; depositing a second material different from the first material into the plurality of recesses and atop the substrate to fill the plurality of recesses and to form a layer atop the first surface; and planarizing the second material using a first slurry in a chemical mechanical polishing tool until the first surface is reached. In some embodiments, a second slurry, different than the first slurry, is used to planarize the substrate to a first level.
    Type: Application
    Filed: May 3, 2013
    Publication date: November 7, 2013
    Inventors: YI-CHIAU HUANG, GREGORY MENK, ERROL ANTONIO C. SANCHEZ, BINGXI WOOD