Patents by Inventor Binquan Luan

Binquan Luan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160238559
    Abstract: A nanosensor for detecting molecule characteristics includes a membrane having an opening configured to permit a charged carbon nanotube to pass but to block a molecule attached to the carbon nanotube. The opening is filled with an electrolytic solution. An electric field generator is configured to generate an electric field relative to the opening to drive the charged carbon nanotubes through the opening. A sensor circuit is coupled to the electric field generator to sense current changes due to charged carbon nanotubes passing into the opening, and to bias the electric field generator to determine a critical voltage related to a force of separation between the carbon nanotube and the molecule.
    Type: Application
    Filed: April 28, 2016
    Publication date: August 18, 2016
    Inventors: BINQUAN LUAN, RUHONG ZHOU
  • Patent number: 9372171
    Abstract: A nanosensor for detecting molecule characteristics includes a membrane having an opening configured to permit a charged carbon nanotube to pass but to block a molecule attached to the carbon nanotube. The opening is filled with an electrolytic solution. An electric field generator is configured to generate an electric field relative to the opening to drive the charged carbon nanotubes through the opening. A sensor circuit is coupled to the electric field generator to sense current changes due to charged carbon nanotubes passing into the opening, and to bias the electric field generator to determine a critical voltage related to a force of separation between the carbon nanotube and the molecule.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: June 21, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Binquan Luan, Ruhong Zhou
  • Publication number: 20160139105
    Abstract: A nanodevice includes a reservoir filled with conductive fluid and a membrane separating the reservoir. A nanopore is formed through the membrane having electrode layers separated by insulating layers. A certain electrode layer has a first type of organic coating and a pair of electrode layers has a second type. The first type of organic coating forms a motion control transient bond to a molecule in the nanopore for motion control, and the second type forms first and second transient bonds to different bonding sites of a base of the molecule. When a voltage is applied to the pair of electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels via the first and second transient bonds formed to be measured as a current signature for distinguishing the base. The motion control transient bond is stronger than first and second transient bonds.
    Type: Application
    Filed: January 25, 2016
    Publication date: May 19, 2016
    Inventors: Ali Afzali-Ardakani, Stefan Harrer, Binquan Luan, Hongbo Peng, Stephen M. Rossnagel, Ajay K. Royyuru, Gustavo A. Stolovitzky, Philip S. Waggoner
  • Patent number: 9285339
    Abstract: A nanodevice includes a reservoir filled with conductive fluid and a membrane separating the reservoir. A nanopore is formed through the membrane having electrode layers separated by insulating layers. A certain electrode layer has a first type of organic coating and a pair of electrode layers has a second type. The first type of organic coating forms a motion control transient bond to a molecule in the nanopore for motion control, and the second type forms first and second transient bonds to different bonding sites of a base of the molecule. When a voltage is applied to the pair of electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels via the first and second transient bonds formed to be measured as a current signature for distinguishing the base. The motion control transient bond is stronger than first and second transient bonds.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: March 15, 2016
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Stefan Harrer, Binquan Luan, Hongbo Peng, Stephen M. Rossnagel, Ajay K. Royyuru, Gustavo A. Stolovitzky, Philip S. Waggoner
  • Patent number: 9285337
    Abstract: A technique includes providing a nanodevice. A gate electrode structure has nanochannels with a first end connected to a first common trench and a second end connected to a second common trench. A gate electrode extends laterally as a continuous line on the gate electrode structure and is formed in each of the nanochannels. The gate electrode forms a separate nano-ring electrode around a partial circumference inside each of the nanochannels. The gate electrode is parallel to the first and second common trenches and is perpendicular to the nanochannels.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: March 15, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Binquan Luan, Sung-wook Nam
  • Publication number: 20150323490
    Abstract: Techniques for increasing the capture zone in nano and microchannel-based polymer testing structures using concentric arrangements of nanostructures, such as nanopillars are provided. In one aspect, a testing structure for testing polymers is provided that includes a first fluid reservoir and a second fluid reservoir formed in an electrically insulating substrate; at least one channel formed in the insulating substrate that interconnects the first fluid reservoir and the second fluid reservoir; and an arrangement of nanostructures within either the first fluid reservoir or the second fluid reservoir wherein the nanostructures are arranged so as to form multiple concentric circles inside either the first fluid reservoir or the second fluid reservoir with each of the concentric circles being centered at an entry point of the channel. A method of analyzing a polymer using the testing structure is also provided.
    Type: Application
    Filed: May 7, 2014
    Publication date: November 12, 2015
    Applicant: International Business Machines Corporation
    Inventors: Binquan Luan, Gustavo A. Stolovitzky, Chao Wang, Deqiang Wang
  • Publication number: 20150275288
    Abstract: A technique is provided for controlling biomolecules in a nanodevice. A membrane has two reservoirs at opposing ends of the membrane. A nanochannel is formed in the membrane connecting the two reservoirs. A gate electrode is formed on the membrane such that the gate electrode extends laterally in a region of the nanochannel. A biomolecule is trapped in the nanochannel by applying a first voltage to the gate electrode. In response to trapping the biomolecule, the biomolecule is stretched in the nanochannel by applying a second voltage to the gate electrode. The biomolecule is stretched based on changing from the first voltage to the second voltage applied to the gate electrode.
    Type: Application
    Filed: March 26, 2014
    Publication date: October 1, 2015
    Applicant: International Business Machines Corporation
    Inventors: Binquan Luan, Sung-wook Nam
  • Publication number: 20150276664
    Abstract: A technique includes providing a nanodevice. A gate electrode structure has nanochannels with a first end connected to a first common trench and a second end connected to a second common trench. A gate electrode extends laterally as a continuous line on the gate electrode structure and is formed in each of the nanochannels. The gate electrode forms a separate nano-ring electrode around a partial circumference inside each of the nanochannels. The gate electrode is parallel to the first and second common trenches and is perpendicular to the nanochannels.
    Type: Application
    Filed: March 26, 2014
    Publication date: October 1, 2015
    Applicant: International Business Machines Corporation
    Inventors: Binquan Luan, Sung-wook Nam
  • Publication number: 20150276665
    Abstract: A technique includes providing a nanodevice. A gate electrode structure has nanochannels with a first end connected to a first common trench and a second end connected to a second common trench. A gate electrode extends laterally as a continuous line on the gate electrode structure and is formed in each of the nanochannels. The gate electrode forms a separate nano-ring electrode around a partial circumference inside each of the nanochannels. The gate electrode is parallel to the first and second common trenches and is perpendicular to the nanochannels.
    Type: Application
    Filed: April 24, 2015
    Publication date: October 1, 2015
    Inventors: Binquan Luan, Sung-wook Nam
  • Patent number: 9146211
    Abstract: A technique includes providing a nanodevice. A gate electrode structure has nanochannels with a first end connected to a first common trench and a second end connected to a second common trench. A gate electrode extends laterally as a continuous line on the gate electrode structure and is formed in each of the nanochannels. The gate electrode forms a separate nano-ring electrode around a partial circumference inside each of the nanochannels. The gate electrode is parallel to the first and second common trenches and is perpendicular to the nanochannels.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: September 29, 2015
    Assignee: International Business Machines Corporation
    Inventors: Binquan Luan, Sung-wook Nam
  • Publication number: 20150160159
    Abstract: A nanodevice includes a reservoir filled with conductive fluid and a membrane separating the reservoir. A nanopore is formed through the membrane having electrode layers separated by insulating layers. A certain electrode layer has a first type of organic coating and a pair of electrode layers has a second type. The first type of organic coating forms a motion control transient bond to a molecule in the nanopore for motion control, and the second type forms first and second transient bonds to different bonding sites of a base of the molecule. When a voltage is applied to the pair of electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels via the first and second transient bonds formed to be measured as a current signature for distinguishing the base. The motion control transient bond is stronger than first and second transient bonds.
    Type: Application
    Filed: February 18, 2015
    Publication date: June 11, 2015
    Inventors: Ali Afzali-Ardakani, Stefan Harrer, Binquan Luan, Hongbo Peng, Stephen M. Rossnagel, Ajay K. Royyuru, Gustavo A. Stolovitzky, Philip S. Waggoner
  • Publication number: 20150159209
    Abstract: A mechanism is provided for ratcheting a double strand molecule. The double strand molecule is driven into a Y-channel of a membrane by a first voltage pulse. The Y-channel includes a stem and branches, and the branches are connected to the stem at a junction. The double strand molecule is slowed at the junction of the Y-channel based on the first voltage pulse being weaker than a force required to break a base pair of the double strand molecule. The double strand molecule is split into a first single strand and a second single strand by driving the double strand molecule into the junction of the Y-channel at a second voltage pulse.
    Type: Application
    Filed: February 6, 2015
    Publication date: June 11, 2015
    Inventors: Binquan Luan, Ruhong Zhou
  • Publication number: 20150153305
    Abstract: A mechanism is provided for ratcheting a double strand molecule. The double strand molecule is driven into a Y-channel of a membrane by a first voltage pulse. The Y-channel includes a stem and branches, and the branches are connected to the stem at a junction. The double strand molecule is slowed at the junction of the Y-channel based on the first voltage pulse being weaker than a force required to break a base pair of the double strand molecule. The double strand molecule is split into a first single strand and a second single strand by driving the double strand molecule into the junction of the Y-channel at a second voltage pulse.
    Type: Application
    Filed: February 6, 2015
    Publication date: June 4, 2015
    Inventors: Binquan Luan, Ruhong Zhou
  • Publication number: 20150153309
    Abstract: A mechanism is provided for ratcheting a double strand molecule. The double strand molecule is driven into a Y-channel of a membrane by a first voltage pulse. The Y-channel includes a stem and branches, and the branches are connected to the stem at a junction. The double strand molecule is slowed at the junction of the Y-channel based on the first voltage pulse being weaker than a force required to break a base pair of the double strand molecule. The double strand molecule is split into a first single strand and a second single strand by driving the double strand molecule into the junction of the Y-channel at a second voltage pulse.
    Type: Application
    Filed: February 6, 2015
    Publication date: June 4, 2015
    Inventors: Binquan Luan, Ruhong Zhou
  • Patent number: 8986524
    Abstract: A nanodevice includes a reservoir filled with conductive fluid and a membrane separating the reservoir. A nanopore is formed through the membrane having electrode layers separated by insulating layers. A certain electrode layer has a first type of organic coating and a pair of electrode layers has a second type. The first type of organic coating forms a motion control transient bond to a molecule in the nanopore for motion control, and the second type forms first and second transient bonds to different bonding sites of a base of the molecule. When a voltage is applied to the pair of electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels via the first and second transient bonds formed to be measured as a current signature for distinguishing the base. The motion control transient bond is stronger than first and second transient bonds.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: March 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Stefan Harrer, Binquan Luan, Hongbo Peng, Stephen M. Rossnagel, Ajay K. Royyuru, Gustavo A. Stolovitzky, Philip S. Waggoner
  • Publication number: 20150068902
    Abstract: The present invention provides a nano-fluidic field effective device. The device includes a channel having a first side and a second side, a first set of electrodes adjacent to the first side, a second set of electrodes adjacent to the second side, a control unit for applying electric potentials to the electrodes and a fluid within the channel containing a charge molecule. The first set of electrodes is disposed such that application of electric potentials produces a spatially varying electric field that confines a charged molecule within a predetermined area of said channel. The second set of electrodes is disposed such that application of electric potentials relative to the electric potentials applied to the first set of electrodes creates an electric field that confines the charged molecule to an area away from the second side of the channel.
    Type: Application
    Filed: November 17, 2014
    Publication date: March 12, 2015
    Inventors: Ali Afzali-Ardakani, Stefan Harrer, Binquan Luan, Glenn J. Martyna, Dennis M. Newns, Hongbo Peng, Stanislav Polonsky, Stephen Rossnagel, Gustavo Stolovitzky
  • Publication number: 20150037843
    Abstract: A mixed polynucleotide includes a first double stranded (ds) portion, a second portion including at least one single stranded (ss) portion, and a third ds portion. The second portion connects the first ds portion and the third ds portion to provide a modified polynucleotide.
    Type: Application
    Filed: August 28, 2013
    Publication date: February 5, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Binquan Luan, Ajay K. Royyuru, Gustavo A. Stolovitzky, Chao Wang, Deqiang Wang
  • Publication number: 20150037787
    Abstract: A mixed polynucleotide includes a first double stranded (ds) portion, a second portion including at least one single stranded (ss) portion, and a third ds portion. The second portion connects the first ds portion and the third ds portion to provide a modified polynucleotide.
    Type: Application
    Filed: July 31, 2013
    Publication date: February 5, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Binquan Luan, Ajay K. Royyuru, Gustavo A. Stolovitzky, Chao Wang, Deqiang Wang
  • Publication number: 20150038691
    Abstract: A mixed polynucleotide includes a first double stranded (ds) portion, a second portion including at least one single stranded (ss) portion, and a third ds portion. The second portion connects the first ds portion and the third ds portion to provide a modified polynucleotide.
    Type: Application
    Filed: August 28, 2013
    Publication date: February 5, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Binquan Luan, Ajay K. Royyuru, Gustavo A. Stolovitzky, Chao Wang, Deqiang Wang
  • Patent number: 8945404
    Abstract: A mechanism is provided for fabricating nanochannels for a nanodevice. Insulating film is deposited on a substrate. A nanowire is patterned on the film. Insulating material is deposited on the nanowire and film. A first circular hole is formed in the insulating material as an inlet, over a first tip of the nanowire to expose the first tip. A second circular hole is formed as an outlet, over a second tip of the nanowire opposite the first tip to expose the second tip. A nanochannel connects the first and second holes by etching away the nanowire via an etchant in the first and the second holes. A first reservoir is attached over the first hole in connection with the nanochannel at a previous location of the first tip. A second reservoir is attached over the second hole in connection with the nanochannel at a previous location of the second tip.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: February 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Binquan Luan, Gustavo A. Stolovitzky, Chao Wang, Deqiang Wang