Patents by Inventor Bo-Yu Lai
Bo-Yu Lai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20220223591Abstract: A method includes forming a semiconductor fin protruding higher than top surfaces of isolation regions. A top portion of the semiconductor fin is formed of a first semiconductor material. A semiconductor cap layer is formed on a top surface and sidewalls of the semiconductor fin. The semiconductor cap layer is formed of a second semiconductor material different from the first semiconductor material. The method further includes forming a gate stack on the semiconductor cap layer, forming a gate spacer on a sidewall of the gate stack, etching a portion of the semiconductor fin on a side of the gate stack to form a first recess extending into the semiconductor fin, recessing the semiconductor cap layer to form a second recess directly underlying a portion of the gate spacer, and performing an epitaxy to grow an epitaxy region extending into both the first recess and the second recess.Type: ApplicationFiled: April 4, 2022Publication date: July 14, 2022Inventors: Yen-Ting Chen, Bo-Yu Lai, Chien-Wei Lee, Hsueh-Chang Sung, Wei-Yang Lee, Feng-Cheng Yang, Yen-Ming Chen
-
Publication number: 20220122893Abstract: A method of manufacturing a semiconductor device includes forming a fin structure over a substrate, forming a sacrificial gate structure over the fin structure, and etching a source/drain (S/D) region of the fin structure to form an S/D recess. The fin structure includes first semiconductor layers and second semiconductor layers alternately stacked. The method further includes depositing an insulating dielectric layer in the S/D recess, depositing an etch protection layer over a bottom portion of the insulating dielectric layer, and partially removing the insulating dielectric layer. The method further includes growing an epitaxial S/D feature in the S/D recess. The bottom portion of the insulating dielectric layer interposes the epitaxial S/D feature and the substrate.Type: ApplicationFiled: April 23, 2021Publication date: April 21, 2022Inventors: Bo-Yu Lai, Jyun-Chih Lin, Yen-Ting Chen, Wei-Yang Lee, Chia-Pin Lin, Wei Hao Lu, Li-Li Su
-
Patent number: 11296077Abstract: A method includes forming a semiconductor fin protruding higher than top surfaces of isolation regions. A top portion of the semiconductor fin is formed of a first semiconductor material. A semiconductor cap layer is formed on a top surface and sidewalls of the semiconductor fin. The semiconductor cap layer is formed of a second semiconductor material different from the first semiconductor material. The method further includes forming a gate stack on the semiconductor cap layer, forming a gate spacer on a sidewall of the gate stack, etching a portion of the semiconductor fin on a side of the gate stack to form a first recess extending into the semiconductor fin, recessing the semiconductor cap layer to form a second recess directly underlying a portion of the gate spacer, and performing an epitaxy to grow an epitaxy region extending into both the first recess and the second recess.Type: GrantFiled: June 3, 2019Date of Patent: April 5, 2022Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yen-Ting Chen, Bo-Yu Lai, Chien-Wei Lee, Hsueh-Chang Sung, Wei-Yang Lee, Feng-Cheng Yang, Yen-Ming Chen
-
Patent number: 11205724Abstract: A method includes forming a metal gate in a first inter-layer dielectric, performing a treatment on the metal gate and the first inter-layer dielectric, selectively growing a hard mask on the metal gate without growing the hard mask from the first inter-layer dielectric, depositing a second inter-layer dielectric over the hard mask and the first inter-layer dielectric, planarizing the second inter-layer dielectric and the hard mask, and forming a gate contact plug penetrating through the hard mask to electrically couple to the metal gate.Type: GrantFiled: May 27, 2020Date of Patent: December 21, 2021Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Kai-Hsuan Lee, Bo-Yu Lai, Sheng-Chen Wang, Sai-Hooi Yeong, Yen-Ming Chen, Chi On Chui
-
Patent number: 11133229Abstract: A method includes forming a gate dielectric layer on a semiconductor fin, and forming a gate electrode over the gate dielectric layer. The gate electrode extends on sidewalls and a top surface of the semiconductor fin. A gate spacer is selectively deposited on a sidewall of the gate electrode. An exposed portion of the gate dielectric layer is free from a same material for forming the gate spacer deposited thereon. The method further includes etching the gate dielectric layer using the gate spacer as an etching mask to expose a portion of the semiconductor fin, and forming an epitaxy semiconductor region based on the semiconductor fin.Type: GrantFiled: January 13, 2020Date of Patent: September 28, 2021Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Kai-Hsuan Lee, Chia-Ta Yu, Cheng-Yu Yang, Sheng-Chen Wang, Bo-Yu Lai, Bo-Cyuan Lu, Chi On Chui, Sai-Hooi Yeong, Feng-Cheng Yang, Yen-Ming Chen
-
Publication number: 20210183996Abstract: In one example aspect, a method for integrated circuit (IC) fabrication comprises providing a device structure including a substrate, a source/drain (S/D) feature on the substrate, a gate stack on the substrate, a contact hole over the S/D feature; and a dummy feature over the S/D feature and between the gate stack and the contact hole. The method further comprises forming in the contact hole a contact plug that is electrically coupled to the S/D feature, and, after forming the contact plug, selectively removing the dummy feature to form an air gap that extends higher than a top surface of the gate stack. The method further comprises forming over the contact plug a seal layer that covers the air gap.Type: ApplicationFiled: February 15, 2021Publication date: June 17, 2021Inventors: Kai-Hsuan Lee, Bo-Yu Lai, Sai-Hooi Yeong, Feng-Cheng Yang, Yih-Ann Lin, Yen-Ming Chen
-
Publication number: 20210134985Abstract: Doping techniques for fin-like field effect transistors (FinFETs) are disclosed herein. An exemplary method includes forming a fin structure, forming a doped amorphous layer over a portion of the fin structure, and performing a knock-on implantation process to drive a dopant from the doped amorphous layer into the portion of the fin structure, thereby forming a doped feature. The doped amorphous layer includes a non-crystalline form of a material. In some implementations, the knock-on implantation process crystallizes at least a portion of the doped amorphous layer, such that the portion of the doped amorphous layer becomes a part of the fin structure. In some implementations, the doped amorphous layer includes amorphous silicon, and the knock-on implantation process crystallizes a portion of the doped amorphous silicon layer.Type: ApplicationFiled: December 14, 2020Publication date: May 6, 2021Inventors: Sai-Hooi Yeong, Sheng-Chen Wang, Bo-Yu Lai, Ziwei Fang, Feng-Cheng Yang, Yen-Ming Chen
-
Publication number: 20210118749Abstract: A semiconductor device includes a gate stack, an epitaxy structure, a first spacer, a second spacer, and a dielectric residue. The gate stack is over a substrate. The epitaxy structure is formed raised above the substrate. The first spacer is on a sidewall of the gate stack. The first spacer and the epitaxy structure define an air gap therebetween. The second spacer seals the air gap between the first spacer and the epitaxy structure. The dielectric residue is in the air gap and has an upper portion and a lower portion under the upper portion. The upper portion of the dielectric residue has higher etch resistance to phosphoric acid than that of the lower portion of the dielectric residue.Type: ApplicationFiled: December 7, 2020Publication date: April 22, 2021Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Bo-Yu LAI, Kai-Hsuan LEE, Wei-Yang LEE, Feng-Cheng YANG, Yen-Ming CHEN
-
Publication number: 20210057546Abstract: Embodiments of the present disclosure relate to a FinFET device having gate spacers with reduced capacitance and methods for forming the FinFET device. Particularly, the FinFET device according to the present disclosure includes gate spacers formed by two or more depositions. The gate spacers are formed by depositing first and second materials at different times of processing to reduce parasitic capacitance between gate structures and contacts introduced after epitaxy growth of source/drain regions.Type: ApplicationFiled: November 5, 2020Publication date: February 25, 2021Inventors: Wen-Kai Lin, Bo-Yu Lai, Li Chun Te, Kai-Hsuan Lee, Sai-Hooi Yeong, Tien-I Bao, Wei-Ken Lin
-
Patent number: 10923565Abstract: In one example aspect, a method for integrated circuit (IC) fabrication comprises providing a device structure including a substrate, a source/drain (S/D) feature on the substrate, a gate stack on the substrate, a contact hole over the S/D feature; and a dummy feature over the S/D feature and between the gate stack and the contact hole. The method further comprises forming in the contact hole a contact plug that is electrically coupled to the S/D feature, and, after forming the contact plug, selectively removing the dummy feature to form an air gap that extends higher than a top surface of the gate stack. The method further comprises forming over the contact plug a seal layer that covers the air gap.Type: GrantFiled: September 27, 2018Date of Patent: February 16, 2021Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Kai-Hsuan Lee, Bo-Yu Lai, Sai-Hooi Yeong, Feng-Cheng Yang, Yih-Ann Lin, Yen-Ming Chen
-
Publication number: 20210043751Abstract: A FinFET device structure is provided. The FinFET device structure includes a fin structure formed over a substrate, and a gate structure formed over the fin structure. The FinFET device structure also includes an epitaxial source/drain (S/D) structure formed over the fin structure. A top surface and a sidewall of the fin structure are surrounded by the epitaxial S/D structure. A first distance between an outer surface of the epitaxial S/D structure and the sidewall of the fin structure is no less than a second distance between the outer surface of the epitaxial S/D structure and the top surface of the fin structure.Type: ApplicationFiled: October 29, 2020Publication date: February 11, 2021Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Sai-Hooi YEONG, Chi-On CHUI, Bo-Feng YOUNG, Bo-Yu LAI, Kuan-Lun CHENG, Chih-Hao WANG
-
Patent number: 10868151Abstract: Doping techniques for fin-like field effect transistors (FinFETs) are disclosed herein. An exemplary method includes forming a fin structure, forming a doped amorphous layer over a portion of the fin structure, and performing a knock-on implantation process to drive a dopant from the doped amorphous layer into the portion of the fin structure, thereby forming a doped feature. The doped amorphous layer includes a non-crystalline form of a material. In some implementations, the knock-on implantation process crystallizes at least a portion of the doped amorphous layer, such that the portion of the doped amorphous layer becomes a part of the fin structure. In some implementations, the doped amorphous layer includes amorphous silicon, and the knock-on implantation process crystallizes a portion of the doped amorphous silicon layer.Type: GrantFiled: April 29, 2019Date of Patent: December 15, 2020Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Sai-Hooi Yeong, Sheng-Chen Wang, Bo-Yu Lai, Ziwei Fang, Feng-Cheng Yang, Yen-Ming Chen
-
Patent number: 10861753Abstract: A method includes forming a gate stack over a semiconductor substrate, forming a first spacer layer on a sidewall of the gate stack, forming a sacrificial spacer film over the first spacer layer, forming an epitaxy structure on the semiconductor substrate, and performing an etching process on the sacrificial spacer film to form a gap between the first spacer layer and the epitaxy structure. An outer portion of the sacrificial spacer film has a topmost end higher than that of an inner portion of the sacrificial spacer film after performing the etching process. The method further includes forming a second spacer layer to seal the gap between the epitaxy structure and the first spacer layer.Type: GrantFiled: May 14, 2019Date of Patent: December 8, 2020Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Bo-Yu Lai, Kai-Hsuan Lee, Wei-Yang Lee, Feng-Cheng Yang, Yen-Ming Chen
-
Patent number: 10833167Abstract: A FinFET device structure is provided. The FinFET device structure includes a fin structure formed over a substrate, and a gate structure formed over the fin structure. The FinFET device structure also includes an epitaxial source/drain (S/D) structure formed over the fin structure. A top surface and a sidewall of the fin structure are surrounded by the epitaxial S/D structure. A first distance between an outer surface of the epitaxial S/D structure and the sidewall of the fin structure is no less than a second distance between the outer surface of the epitaxial S/D structure and the top surface of the fin structure.Type: GrantFiled: January 25, 2019Date of Patent: November 10, 2020Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Sai-Hooi Yeong, Chi-On Chui, Bo-Feng Young, Bo-Yu Lai, Kuan-Lun Cheng, Chih-Hao Wang
-
Patent number: 10833170Abstract: Embodiments of the present disclosure relate to a FinFET device having gate spacers with reduced capacitance and methods for forming the FinFET device. Particularly, the FinFET device according to the present disclosure includes gate spacers formed by two or more depositions. The gate spacers are formed by depositing first and second materials at different times of processing to reduce parasitic capacitance between gate structures and contacts introduced after epitaxy growth of source/drain regions.Type: GrantFiled: October 4, 2019Date of Patent: November 10, 2020Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Wen-Kai Lin, Bo-Yu Lai, Li Chun Te, Kai-Hsuan Lee, Sai-Hooi Yeong, Tien-I Bao, Wei-Ken Lin
-
Publication number: 20200287042Abstract: A method includes forming a metal gate in a first inter-layer dielectric, performing a treatment on the metal gate and the first inter-layer dielectric, selectively growing a hard mask on the metal gate without growing the hard mask from the first inter-layer dielectric, depositing a second inter-layer dielectric over the hard mask and the first inter-layer dielectric, planarizing the second inter-layer dielectric and the hard mask, and forming a gate contact plug penetrating through the hard mask to electrically couple to the metal gate.Type: ApplicationFiled: May 27, 2020Publication date: September 10, 2020Inventors: Kai-Hsuan Lee, Bo-Yu Lai, Sheng-Chen Wang, Sai-Hooi Yeong, Yen-Ming Chen, Chi On Chui
-
Patent number: 10686075Abstract: A method includes forming a metal gate in a first inter-layer dielectric, performing a treatment on the metal gate and the first inter-layer dielectric, selectively growing a hard mask on the metal gate without growing the hard mask from the first inter-layer dielectric, depositing a second inter-layer dielectric over the hard mask and the first inter-layer dielectric, planarizing the second inter-layer dielectric and the hard mask, and forming a gate contact plug penetrating through the hard mask to electrically couple to the metal gate.Type: GrantFiled: August 20, 2018Date of Patent: June 16, 2020Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Kai-Hsuan Lee, Bo-Yu Lai, Sheng-Chen Wang, Sai-Hooi Yeong, Yen-Ming Chen, Chi On Chui
-
Publication number: 20200161297Abstract: A method includes forming a semiconductor fin protruding higher than top surfaces of isolation regions. A top portion of the semiconductor fin is formed of a first semiconductor material. A semiconductor cap layer is formed on a top surface and sidewalls of the semiconductor fin. The semiconductor cap layer is formed of a second semiconductor material different from the first semiconductor material. The method further includes forming a gate stack on the semiconductor cap layer, forming a gate spacer on a sidewall of the gate stack, etching a portion of the semiconductor fin on a side of the gate stack to form a first recess extending into the semiconductor fin, recessing the semiconductor cap layer to form a second recess directly underlying a portion of the gate spacer, and performing an epitaxy to grow an epitaxy region extending into both the first recess and the second recess.Type: ApplicationFiled: June 3, 2019Publication date: May 21, 2020Inventors: Yen-Ting Chen, Bo-Yu Lai, Chien-Wei Lee, Hsueh-Chang Sung, Wei-Yang Lee, Feng-Cheng Yang, Yen-Ming Chen
-
Publication number: 20200152522Abstract: A method includes forming a gate dielectric layer on a semiconductor fin, and forming a gate electrode over the gate dielectric layer. The gate electrode extends on sidewalls and a top surface of the semiconductor fin. A gate spacer is selectively deposited on a sidewall of the gate electrode. An exposed portion of the gate dielectric layer is free from a same material for forming the gate spacer deposited thereon. The method further includes etching the gate dielectric layer using the gate spacer as an etching mask to expose a portion of the semiconductor fin, and forming an epitaxy semiconductor region based on the semiconductor fin.Type: ApplicationFiled: January 13, 2020Publication date: May 14, 2020Inventors: Kai-Hsuan Lee, Chia-Ta Yu, Cheng-Yu Yang, Sheng-Chen Wang, Bo-Yu Lai, Bo-Cyuan Lu, Chi On Chui, Sai-Hooi Yeong, Feng-Cheng Yang, Yen-Ming Chen
-
Publication number: 20200135883Abstract: A FinFET device structure is provided. The FinFET device structure includes a fin structure formed over a substrate, and a gate structure formed over the fin structure. The FinFET device structure also includes an epitaxial source/drain (S/D) structure formed over the fin structure. A top surface and a sidewall of the fin structure are surrounded by the epitaxial S/D structure. A first distance between an outer surface of the epitaxial S/D structure and the sidewall of the fin structure is no less than a second distance between the outer surface of the epitaxial S/D structure and the top surface of the fin structure.Type: ApplicationFiled: January 25, 2019Publication date: April 30, 2020Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Sai-Hooi YEONG, Chi-On CHUI, Bo-Feng YOUNG, Bo-Yu LAI, Kuan-Lun CHENG, Chih-Hao WANG