Patents by Inventor Bradley Allen Kramer

Bradley Allen Kramer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150091642
    Abstract: In an amplifier, a first stage receives a differential input voltage, which is formed by first and second input voltages, and outputs a first differential current in response thereto on first and second lines having respective first and second line voltages. A second stage receives the first and second line voltages and outputs a second differential current in response thereto on third and fourth lines having respective third and fourth line voltages. A transformer includes first and second coils. A first terminal of the first coil is coupled through a first resistor to the first line. A second terminal of the first coil is coupled through a second resistor to the second line. A first terminal of the second coil is coupled through a third resistor to the third line. A second terminal of the second coil is coupled through a fourth resistor to the fourth line.
    Type: Application
    Filed: October 30, 2013
    Publication date: April 2, 2015
    Applicant: Texas Instruments Incorporated
    Inventors: Swaminathan Sankaran, Bradley Allen Kramer, Hassan Ali, Nirmal C. Warke
  • Publication number: 20150071380
    Abstract: Data transfer devices and methods for transferring data between first and second circuits are disclosed. A data transfer device includes a first circuit having a plurality of data channels, wherein at least one of the data channels is an active data channel. A serializer has a plurality of inputs and an output, wherein the inputs are coupled to the plurality of data channels. The serializer is for coupling only one active channel at a time to the output. An isolation barrier is coupled to the output of the serializer, the isolation attenuates transients and passes the fundamental frequency. A second circuit includes a deserializer having an input and at least one output, the input is coupled to the isolation barrier, the at least one output is at least one active data channel.
    Type: Application
    Filed: May 29, 2014
    Publication date: March 12, 2015
    Applicant: Texas Instruments Incorporated
    Inventors: Mark W. Morgan, Swaminathan Sankaran, Bradley Allen Kramer
  • Publication number: 20150004907
    Abstract: In a first inductive structure, a first data coil includes: a first portion for conducting a first common mode current in a first direction; and a second portion for conducting a second common mode current in a second direction opposite the first direction. The first and second portions of the first data coil are connected at a first node. In a second inductive structure, a second data coil includes: a first portion for conducting a third common mode current in the first direction; and a second portion for conducting a fourth common mode current in the second direction. The first and second portions of the second data coil are connected at a second node galvanically isolated from the first node. The first, second, third and fourth common mode currents are induced by a common mode transient.
    Type: Application
    Filed: June 23, 2014
    Publication date: January 1, 2015
    Inventors: Rajaram Subramoniam, Gianpaolo Lisi, Swaminathan Sankaran, Bradley Allen Kramer, Gerard Socci
  • Patent number: 7474211
    Abstract: System and method for disabling a RFID tag. A preferred embodiment comprises attenuating a signal received at an antenna of the RFID tag based upon a status of the RFID tag and responding to an instruction in the received signal if the attenuated signal is detectable. The attenuation of the received signal requires that the received signal have a signal strength greater than a specified threshold in order for the instruction in the received signal to be detectable. This means that for a given signal transmit power, the RFID tag must be within a certain distance from a RFID reader attempting to retrieve information from the RFID tag. By setting the attenuation amount at a sufficiently high level, the method ensures that the RFID reader must be substantially adjacent to the RFID tag, preventing the unintended retrieval of unique identification information by RFID readers remotely located from the RFID tag.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: January 6, 2009
    Inventor: Bradley Allen Kramer
  • Patent number: 7279920
    Abstract: System and method for integrated circuit manufacturing. A preferred embodiment comprises transmitting a first set of data to integrated circuits (ICs) while they are in an on-wafer state and having each IC store the first set of data into memory, transmitting a second set of data to the ICs and having the ICs compare the second set of data with the first set of data stored in the memory, reading out the results of the comparisons, and marking an IC as being defective if the comparison indicates that that the first set of data did not match the second set of data. Each IC features an antenna formed in the scribe line region adjacent to the IC so that communications can take place while the IC remains on the wafer without the need to use electrical probes.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: October 9, 2007
    Assignee: Texas Instruments Incoporated
    Inventor: Bradley Allen Kramer
  • Patent number: 7197921
    Abstract: Systems and methods are disclosed to for detecting movement of an object. In one embodiment, a system is disclosed to detect movement of an object (e.g., a tire). The system includes a sensor that is operative to sense at least a pressure condition within an enclosed space of the object based on an operating mode of the system. A control system controls the operating mode of the system based at least in part on whether movement of the object is detected. The movement of the object is detected based on a variation in the at least a pressure condition over time. The system can be implemented as part of a tire pressure monitoring system.
    Type: Grant
    Filed: January 4, 2005
    Date of Patent: April 3, 2007
    Assignee: Texas Instruments Incorporated
    Inventor: Bradley Allen Kramer