Patents by Inventor Brendan Harley

Brendan Harley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11591640
    Abstract: A digital assay for a micro RNA (miRNA) or other target analyte in a sample makes use of nanoparticles that absorb light at the resonant wavelength of a photonic crystal (PC). Such nanoparticles locally quench the resonant reflection of light from the PC when present on the surface of the PC. The nanoparticles are functionalized to specifically bind to the target analyte, and the PC surface is functionalized to specifically bind to the nanoparticles that have bound to the target analyte. The sample is exposed to the functionalized nanoparticles, and the individual nanoparticles bound to the PC surface can be identified and counted based on reduced intensity values in the reflected light from the PC. The number of bound nanoparticles that are counted in this way can be correlated to the abundance of the target analyte in the sample.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: February 28, 2023
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Brian T. Cunningham, Yue Zhuo, Brendan Harley, Ji Sun Choi, Thibault Marin, Yi Lu
  • Publication number: 20210324456
    Abstract: A digital assay for a micro RNA (miRNA) or other target analyte in a sample makes use of nanoparticles that absorb light at the resonant wavelength of a photonic crystal (PC). Such nanoparticles locally quench the resonant reflection of light from the PC when present on the surface of the PC. The nanoparticles are functionalized to specifically bind to the target analyte, and the PC surface is functionalized to specifically bind to the nanoparticles that have bound to the target analyte. The sample is exposed to the functionalized nanoparticles, and the individual nanoparticles bound to the PC surface can be identified and counted based on reduced intensity values in the reflected light from the PC. The number of bound nanoparticles that are counted in this way can be correlated to the abundance of the target analyte in the sample.
    Type: Application
    Filed: May 24, 2021
    Publication date: October 21, 2021
    Inventors: Brian T. Cunningham, Yue Zhuo, Brendan Harley, Ji Sun Choi, Thibault Marin, Yi Lu
  • Patent number: 11041187
    Abstract: A digital assay for a micro RNA (miRNA) or other target analyte in a sample makes use of nanoparticles that absorb light at the resonant wavelength of a photonic crystal (PC). Such nanoparticles locally quench the resonant reflection of light from the PC when present on the surface of the PC. The nanoparticles are functionalized to specifically bind to the target analyte, and the PC surface is functionalized to specifically bind to the nanoparticles that have bound to the target analyte. The sample is exposed to the functionalized nanoparticles, and the individual nanoparticles bound to the PC surface can be identified and counted based on reduced intensity values in the reflected light from the PC. The number of bound nanoparticles that are counted in this way can be correlated to the abundance of the target analyte in the sample.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: June 22, 2021
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Brian T. Cunningham, Yue Zhuo, Brendan Harley, Ji Sun Choi, Thibault Marin, Yi Lu
  • Publication number: 20210052771
    Abstract: Compositions including a collagen glycosaminoglycan scaffold and osteoprotegerin are described. The compositions are useful in methods for promoting osteogenesis and attenuating bone resorption.
    Type: Application
    Filed: February 5, 2019
    Publication date: February 25, 2021
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Brendan A. Harley, Justine C. Lee, Timothy A. Miller, Xiaoyan Ren
  • Patent number: 10736992
    Abstract: The invention provides methods and compositions for making and using collagen-glycosaminoglycan three-dimensional scaffolds immobilized with biomolecules that are spatially and temporally patterned. The method comprises adding benzophenone to a collagen-glycosaminoglycan three dimensional scaffold in the dark; adding one or more biomolecules to one or more areas of the collagen-glycosaminoglycan three-dimensional scaffold (which can be done optionally in the dark or in the light); and exposing the collagen-2glycosaminoglycan three-dimensional scaffold to light at a wavelength of about 350 to about 365 nm.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: August 11, 2020
    Assignee: BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Ryan C. Bailey, Brendan A. Harley, Teresa A. Martin, Steven R. Caliari
  • Patent number: 10605735
    Abstract: Photonic Resonator Outcoupler Microscopy (PROM) is a novel, label-free approach for dynamic, long-term, quantitative imaging of a sample on a surface of a photonic crystal (PC) biosensor, in which components of the sample outcouple photons from the resonant evanescent field, resulting in highly localized reductions of the reflected light intensity. By mapping changes in the resonant reflected peak intensity from the PC surface, components of a sample (e.g., focal adhesions) can be detected and dynamically tracked. To demonstrate the simplicity and utility of PROM for focal adhesion imaging, PROM images are compared with biosensor images of surface-bound dielectric permittivity and with fluorescence microscopy images of labeled adhesion molecules in dental stem cells. PROM can dynamically quantify the surface-attached cellular mass density and lateral dimensions of focal adhesion clusters.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: March 31, 2020
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Brian T. Cunningham, Yue Zhuo, Brendan Harley, Ji Sun Choi, Thibault Marin
  • Publication number: 20190192735
    Abstract: The invention provides methods and compositions for making and using collagen-glycosaminoglycan three-dimensional scaffolds immobilized with biomolecules that are spatially and temporally patterned. The method comprises adding benzophenone to a collagen-glycosaminoglycan three dimensional scaffold in the dark; adding one or more biomolecules to one or more areas of the collagen-glycosaminoglycan three-dimensional scaffold (which can be done optionally in the dark or in the light); and exposing the collagen-2glycosaminoglycan three-dimensional scaffold to light at a wavelength of about 350 to about 365 nm.
    Type: Application
    Filed: February 27, 2012
    Publication date: June 27, 2019
    Inventors: Ryan C. Bailey, Brendan A. Harley, Teresa A. Martin, Steven R. Caliari
  • Publication number: 20190127784
    Abstract: A digital assay for a micro RNA (miRNA) or other target analyte in a sample makes use of nanoparticles that absorb light at the resonant wavelength of a photonic crystal (PC). Such nanoparticles locally quench the resonant reflection of light from the PC when present on the surface of the PC. The nanoparticles are functionalized to specifically bind to the target analyte, and the PC surface is functionalized to specifically bind to the nanoparticles that have bound to the target analyte. The sample is exposed to the functionalized nanoparticles, and the individual nanoparticles bound to the PC surface can be identified and counted based on reduced intensity values in the reflected light from the PC. The number of bound nanoparticles that are counted in this way can be correlated to the abundance of the target analyte in the sample.
    Type: Application
    Filed: October 25, 2018
    Publication date: May 2, 2019
    Inventors: Brian T. Cunningham, Yue Zhuo, Brendan Harley, Ji Sun Choi, Thibault Marin, Yi Lu
  • Publication number: 20190120766
    Abstract: Photonic Resonator Outcoupler Microscopy (PROM) is a novel, label-free approach for dynamic, long-term, quantitative imaging of a sample on a surface of a photonic crystal (PC) biosensor, in which components of the sample outcouple photons from the resonant evanescent field, resulting in highly localized reductions of the reflected light intensity. By mapping changes in the resonant reflected peak intensity from the PC surface, components of a sample (e.g., focal adhesions) can be detected and dynamically tracked. To demonstrate the simplicity and utility of PROM for focal adhesion imaging, PROM images are compared with biosensor images of surface-bound dielectric permittivity and with fluorescence microscopy images of labeled adhesion molecules in dental stem cells. PROM can dynamically quantify the surface-attached cellular mass density and lateral dimensions of focal adhesion clusters.
    Type: Application
    Filed: October 18, 2018
    Publication date: April 25, 2019
    Inventors: Brian T. Cunningham, Yue Zhuo, Brendan Harley, Ji Sun Choi, Thibault Marin
  • Publication number: 20140309738
    Abstract: Collagen-glycosaminoglycan membrane shell scaffold core composites for connective tissue engineering that avoids aspects of the typical tradeoff between mechanical properties (i.e. modulus, failure strength) and bioactivity (i.e., permeability and porosity) for porous tissue engineering scaffolds. The relative density of the collagen glycosaminoglycan scaffold core can be about 0.5 to about 0.95 while the membrane shell can be about 0.001 to 25 about 0.2. The core-shell composite can be tubular and the composite can have a diameter of about 1 mm to about 20 mm. The collagen glycosaminoglycan membrane shell can be perforated with about 25 to about 1000 micrometers openings or alternatively can be embossed with any range of pattern features from about 25 to about 1000 micrometers in size. The porous collagen glycosaminoglycan scaffold core can be populated with cells such as adult or embryonic stem cells, tenocytes, osteoblasts, nerve cells, cardiac cells, myocytes, fibroblasts or combinations thereof.
    Type: Application
    Filed: June 1, 2012
    Publication date: October 16, 2014
    Inventors: Brendan A. Harley, Steven R. Caliari, Manuel Alejandro Ramirez Garcia
  • Patent number: 8431146
    Abstract: A device for inhibiting adhesion of apposing human body tissue layers includes a scaffold having a designated mean pore size, relative density, and degradation half-life. The scaffold may be operably positioned between apposing tissue layers, such as proximate adhesiogenic layers at a wound site, so as to permit remesothelialization of the tissue without formation of fibrous adhesions. The scaffold device of the invention inhibits adhesion formation by promoting contractile cell migration away from the wound site for a predetermined period of time. The invention further relates to device and methods for promoting internal tissue regeneration, and for provision and/or dispensation of therapeutic and/or diagnostic agents in vivo.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: April 30, 2013
    Assignee: Axle International Ltd.
    Inventors: Brendan A. Harley, Eric C. Soller, Eric Aiazian
  • Patent number: 8318902
    Abstract: A process for the preparation of a composite biomaterial comprising: providing a first substantially solid component comprising one or more of collagen, a glycosaminoglycan, albumin, hyaluronan, chitosan, and synthetic polypeptides comprising a portion of the polypeptide sequence of collagen, and optionally an inorganic material, said component having at least a surface portion that is porous; providing a fluid composition comprising one or more of collagen, a glycosaminoglycan, albumin, hyaluronan, chitosan, and synthetic polypeptides comprising a portion of the polypeptide sequence of collagen, and a liquid carrier, and optionally an inorganic material; contacting said fluid composition with said porous surface portion of said first component; cooling said fluid composition to a temperature at which the liquid carrier transforms into a plurality of solid crystals or particles; removing at least some of the plurality of solid crystals or particles by sublimation and/or evaporation.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: November 27, 2012
    Assignees: Cambridge Enterprise Limited, Massachusetts Institute of Technology
    Inventors: Andrew Lynn, William Bonfield, Zachary D. Wissner-Gross, Brendan A. Harley, Ioannis V. Yannas, Lorna J. Gibson
  • Publication number: 20120294925
    Abstract: A process for the preparation of a composite biomaterial comprising an inorganic material and an organic material, the process comprising: (a) providing a first slurry composition comprising a liquid carrier, an inorganic material and an organic material; (b) providing a mould for the slurry; (c) depositing the slurry in the mould; (d) cooling the slurry deposited in the mould to a temperature at which the liquid carrier transforms into a plurality of solid crystals or particles; (e) removing at least some of the plurality of solid crystals or particles by sublimation and/or evaporation to leave a porous composite material comprising an inorganic material and an organic material; and (f) removing the material from the mould.
    Type: Application
    Filed: May 29, 2012
    Publication date: November 22, 2012
    Applicant: CAMBRIDGE ENTERPRISE LIMITED
    Inventors: Andrew K. Lynn, William Bonfield, Lorna J. Gibson, Ioannis Yannas, Brendan A. Harley
  • Publication number: 20100303880
    Abstract: The invention is directed to solid gradient scaffolds, methods of producing the same, and therapeutic applications arising from their utilization. Specifically, the gradient scaffolding includes, inter-alia, surface folds of various configuration for increasing surface area to volume of the scaffold.
    Type: Application
    Filed: April 17, 2006
    Publication date: December 2, 2010
    Inventors: Harry K. Reddy, Joannis V. Yannas, Brendan Harley, Christopher J. Zagorski
  • Publication number: 20100248368
    Abstract: A process for the preparation of a composite biomaterial comprising: providing a first substantially solid component comprising one or more of collagen, a glycosaminoglycan, albumin, hyaluronan, chitosan, and synthetic polypeptides comprising a portion of the polypeptide sequence of collagen, and optionally an inorganic material, said component having at least a surface portion that is porous; providing a fluid composition comprising one or more of collagen, a glycosaminoglycan, albumin, hyaluronan, chitosan, and synthetic polypeptides comprising a portion of the polypeptide sequence of collagen, and a liquid carrier, and optionally an inorganic material; contacting said fluid composition with said porous surface portion of said first component; cooling said fluid composition to a temperature at which the liquid carrier transforms into a plurality of solid crystals or particles; removing at least some of the plurality of solid crystals or particles by sublimation and/or evaporation.
    Type: Application
    Filed: August 10, 2007
    Publication date: September 30, 2010
    Applicants: CAMBRIDGE ENTERPRISE LIMITED, MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Andrew Lynn, William Bonfield, Zachary D. Wissner-Gross, Brendan A. Harley, Ioannis V. Yannas, Lorna J. Gibson
  • Publication number: 20100221300
    Abstract: This invention relates to a method for fabricating large scaffolds in a variety of shapes with an organized pore structure. The pore structure is organized such that pores are generally aligned perpendicular to the edges of the scaffold, regardless of-the particular macroscopic scaffold shape. Specifically, a freeze-drying based fabrication method for creating large, polymeric porous scaffolds for tissue engineering applications, with an organized pore structure of columnar pores extending from the scaffold periphery into the main mass of the scaffold.
    Type: Application
    Filed: October 16, 2006
    Publication date: September 2, 2010
    Inventors: Brendan Harley, Harry K. Reddy, Ioannis V. Yannas, Christopher Zagorski
  • Publication number: 20100166830
    Abstract: A device for inhibiting adhesion of apposing human body tissue layers includes a scaffold having a designated mean pore size, relative density, and degradation half-life. The scaffold may be operably positioned between apposing tissue layers, such as proximate adhesiogenic layers at a wound site, so as to permit remesothelialization of the tissue without formation of fibrous adhesions. The scaffold device of the invention inhibits adhesion formation by promoting contractile cell migration away from the wound site for a predetermined period of time. The invention further relates to device and methods for promoting internal tissue regeneration, and for provision and/or dispensation of therapeutic and/or diagnostic agents in vivo.
    Type: Application
    Filed: March 17, 2010
    Publication date: July 1, 2010
    Inventors: Brendan A. Harley, Eric C. Soller, Eric Aiazian
  • Publication number: 20100145473
    Abstract: This invention relates to highly porous scaffolding and methods of producing the same. Specifically, the scaffolding comprises a pore volume fraction of no less than 80% (v/v) of the total volume of the scaffold and interconnecting pores forming channels in the scaffold.
    Type: Application
    Filed: November 7, 2006
    Publication date: June 10, 2010
    Inventors: Ioannis V. Yannas, Brendan Harley, Christpher J. Zagorski, Harry K. Reddy
  • Publication number: 20090022771
    Abstract: A process for the preparation of a composite biomaterial comprising an inorganic material and an organic material, the process comprising: (a) providing a first slurry composition comprising a liquid carrier, an inorganic material and an organic material; (b) providing a mould for the slurry; (c) depositing the slurry in the mould; (d) cooling the slurry deposited in the mould to a temperature at which the liquid carrier transforms into a plurality of solid crystals or particles; (e) removing at least some of the plurality of solid crystals or particles by sublimation and/or evaporation to leave a porous composite material comprising an inorganic material and an organic material; and (f) removing the material from the mould.
    Type: Application
    Filed: March 6, 2006
    Publication date: January 22, 2009
    Applicants: CAMBRIDGE ENTERPRISE LIMITED, MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Andrew K. Lynn, William Bonfield, Lorna J. Gibson, Ioannis Yannas, Brendan A. Harley
  • Publication number: 20080102438
    Abstract: The present invention relates to a process for fabricating molded structures having a radially organized pore structure. The molded structures are formed using a spinning-induced sedimentation technique such that sedimentation of a multi-component liquid suspension produces the internal geometry and porosity of the structure. The porous molded structures of the invention can be used in a number of applications including tissue and organ engineering, dialysis and phase separation membranes and water and liquid waste purification systems.
    Type: Application
    Filed: October 27, 2005
    Publication date: May 1, 2008
    Inventors: Ioannis V. Yannas, Brendan Harley, Abel Z. Hastings, Alessandro Sannino