Patents by Inventor BRENT JUSTIN GOLDMAN

BRENT JUSTIN GOLDMAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240104452
    Abstract: A network computing system can coordinate on-demand transport serviced by transport providers operating throughout a transport service region. The transport providers can comprise a set of internal autonomous vehicles (AVs) and a set of third-party AVs. The system can receive a transport request from a requesting user of the transport service region, where the transport request indicates a pick-up location and a destination. The system can determine a subset of the transport providers to service the respective transport request, and executing a selection process among the subset of the transport providers to select a transport provider to service the transport request. The system may then transmit a transport assignment to the selected transport provider to cause the selected transport provider to service the transport request.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 28, 2024
    Inventors: Brent Justin Goldman, Neil Stegall, Leigh Gray Hagestad
  • Patent number: 11922341
    Abstract: Systems and methods for controlling autonomous vehicles are provided. Assisted autonomy tasks facilitated by operators for a plurality of autonomous vehicles can be tracked in order to generate operator attributes for each of a plurality of operators. The attributes for an operator can be based on tracking one or more respective assisted autonomy tasks facilitated by the operator. The operator attributes can be used to facilitate enhanced remote operations for autonomous vehicles. For example, request parameters can be obtained in response to a request for remote assistance associated with an autonomous vehicle. An operator can be selected to assist with autonomy tasks for the autonomous vehicle based at least in part on the operator attributes for the operator and the request parameters associated with the request. Remote assistance for the first autonomous vehicle can be initiated, facilitated by the first operator in response to the request for remote assistance.
    Type: Grant
    Filed: November 17, 2022
    Date of Patent: March 5, 2024
    Assignee: Uber Technologies, Inc.
    Inventors: Sean Shanshi Chen, Samann Ghorbanian-Matloob, Brent Justin Goldman, Michael Guanran Huang
  • Patent number: 11868928
    Abstract: A network computing system can coordinate on-demand transport serviced by transport providers operating throughout a transport service region. The transport providers can comprise a set of internal autonomous vehicles (AVs) and a set of third-party AVs. The system can receive a transport request from a requesting user of the transport service region, where the transport request indicates a pick-up location and a destination. The system can determine a subset of the transport providers to service the respective transport request, and executing a selection process among the subset of the transport providers to select a transport provider to service the transport request. The system may then transmit a transport assignment to the selected transport provider to cause the selected transport provider to service the transport request.
    Type: Grant
    Filed: August 3, 2022
    Date of Patent: January 9, 2024
    Assignee: Uber Technologies, Inc.
    Inventors: Brent Justin Goldman, Neil Stegall, Leigh Gray Hagestad
  • Patent number: 11841705
    Abstract: Systems and methods for determining appropriate energy replenishment and controlling autonomous vehicles are provided. An example computer-implemented method can include obtaining one or more energy parameters associated with an autonomous vehicle. The method can include determining a refueling task for the autonomous vehicle based at least in part on the energy parameters associated with the autonomous vehicle. The refueling task comprises a first refueling task that is interruptible by a vehicle service assignment or a second refueling task that is not interruptible by the vehicle service assignment. The method can include communicating data indicative of the refueling task to the autonomous vehicle or to a second computing system that manages the autonomous vehicle. The method can include determining whether the refueling task for the autonomous vehicle has been accepted or rejected.
    Type: Grant
    Filed: August 30, 2022
    Date of Patent: December 12, 2023
    Assignee: Uber Technologies, Inc.
    Inventors: Brent Justin Goldman, Mark Yen, Shenglong Gao, Konrad Julian Niemiec, Jay A. Chen
  • Patent number: 11745759
    Abstract: Systems and methods for autonomous vehicle operations are provided. An example computer-implemented method includes obtaining data indicative of vehicle fleet feature(s) associated with an autonomous vehicle fleet. The method includes obtaining data indicative of a vehicle service request associated with a user, the vehicle service request indicating a request for a vehicle service. The method includes determining user feature(s) associated with the user. The method includes determining a compatibility of the user and the autonomous vehicle fleet for the vehicle service based at least in part on the fleet feature(s) and the user feature(s). Determining the compatibility can include predicting how the autonomous vehicle fleet will perform the vehicle service associated with the vehicle service request based at least in part on the fleet's autonomy capabilities. The method includes communicating data associated with the vehicle service request to a computing system associated with the autonomous vehicle fleet.
    Type: Grant
    Filed: December 15, 2022
    Date of Patent: September 5, 2023
    Assignee: Uber Technologies, Inc.
    Inventors: Zhe Liu, Mark Yen, Nathan Falk, Brent Justin Goldman, Shenglong Gao, Aaron Matthew Crum
  • Publication number: 20230145326
    Abstract: Systems and methods for autonomous vehicle operations are provided. An example computer-implemented method includes obtaining data indicative of vehicle fleet feature(s) associated with an autonomous vehicle fleet. The method includes obtaining data indicative of a vehicle service request associated with a user, the vehicle service request indicating a request for a vehicle service. The method includes determining user feature(s) associated with the user. The method includes determining a compatibility of the user and the autonomous vehicle fleet for the vehicle service based at least in part on the fleet feature(s) and the user feature(s). Determining the compatibility can include predicting how the autonomous vehicle fleet will perform the vehicle service associated with the vehicle service request based at least in part on the fleet's autonomy capabilities. The method includes communicating data associated with the vehicle service request to a computing system associated with the autonomous vehicle fleet.
    Type: Application
    Filed: December 15, 2022
    Publication date: May 11, 2023
    Inventors: Zhe Liu, Mark Yen, Nathan Falk, Brent Justin Goldman, Shenglong Gao, Aaron Matthew Crum
  • Publication number: 20230082138
    Abstract: Systems and methods for evaluating and deploying fleets of autonomous in operational domains are described. A computing system may obtain data indicative of one or more capabilities of at least one autonomous vehicle, data indicative of vehicle service dynamics in an operational domain over a period of time, and determining a plurality of resource performance parameters respectively for a plurality of autonomous vehicle fleets associated with potential deployment in the operational domain. Each autonomous vehicle fleet can be associated with a different number of autonomous vehicles The resource performance parameter for each autonomous vehicle fleet can be based at least in part on the one or more capabilities of the at least one autonomous vehicle and the vehicle service dynamics in the operational domain. The computing system can initiate an action associated with the operational domain based at least in part on the plurality of resource performance parameters.
    Type: Application
    Filed: November 17, 2022
    Publication date: March 16, 2023
    Inventors: Valerie Nina Chadha, Ye Yuan, Neil Stegall, Brent Justin Goldman, Kane Sweeney, Rei Chiang
  • Publication number: 20230082760
    Abstract: Systems and methods for controlling autonomous vehicles are provided. Assisted autonomy tasks facilitated by operators for a plurality of autonomous vehicles can be tracked in order to generate operator attributes for each of a plurality of operators. The attributes for an operator can be based on tracking one or more respective assisted autonomy tasks facilitated by the operator. The operator attributes can be used to facilitate enhanced remote operations for autonomous vehicles. For example, request parameters can be obtained in response to a request for remote assistance associated with an autonomous vehicle. An operator can be selected to assist with autonomy tasks for the autonomous vehicle based at least in part on the operator attributes for the operator and the request parameters associated with the request. Remote assistance for the first autonomous vehicle can be initiated, facilitated by the first operator in response to the request for remote assistance.
    Type: Application
    Filed: November 17, 2022
    Publication date: March 16, 2023
    Inventors: Sean Shanshi Chen, Samann Ghorbanian-Matloob, Brent Justin Goldman, Michael Guanran Huang
  • Publication number: 20230062664
    Abstract: Systems and methods for determining appropriate energy replenishment and controlling autonomous vehicles are provided. An example computer-implemented method can include obtaining one or more energy parameters associated with an autonomous vehicle. The method can include determining a refueling task for the autonomous vehicle based at least in part on the energy parameters associated with the autonomous vehicle. The refueling task comprises a first refueling task that is interruptible by a vehicle service assignment or a second refueling task that is not interruptible by the vehicle service assignment. The method can include communicating data indicative of the refueling task to the autonomous vehicle or to a second computing system that manages the autonomous vehicle. The method can include determining whether the refueling task for the autonomous vehicle has been accepted or rejected.
    Type: Application
    Filed: August 30, 2022
    Publication date: March 2, 2023
    Inventors: Brent Justin Goldman, Mark Yen, Shenglong Gao, Konrad Julian Niemiec, Jay A. Chen
  • Patent number: 11541904
    Abstract: Systems and methods for autonomous vehicle operations are provided. An example computer-implemented method includes obtaining data indicative of vehicle fleet feature(s) associated with an autonomous vehicle fleet. The method includes obtaining data indicative of a vehicle service request associated with a user, the vehicle service request indicating a request for a vehicle service. The method includes determining user feature(s) associated with the user. The method includes determining a compatibility of the user and the autonomous vehicle fleet for the vehicle service based at least in part on the fleet feature(s) and the user feature(s). Determining the compatibility can include predicting how the autonomous vehicle fleet will perform the vehicle service associated with the vehicle service request based at least in part on the fleet's autonomy capabilities. The method includes communicating data associated with the vehicle service request to a computing system associated with the autonomous vehicle fleet.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: January 3, 2023
    Assignee: Uber Technologies, Inc.
    Inventors: Zhe Liu, Mark Yen, Nathan Falk, Brent Justin Goldman, Shenglong Gao, Aaron Matthew Crum
  • Patent number: 11526816
    Abstract: Systems and methods for controlling autonomous vehicles are provided. Assisted autonomy tasks facilitated by operators for a plurality of autonomous vehicles can be tracked in order to generate operator attributes for each of a plurality of operators. The attributes for an operator can be based on tracking one or more respective assisted autonomy tasks facilitated by the operator. The operator attributes can be used to facilitate enhanced remote operations for autonomous vehicles. For example, request parameters can be obtained in response to a request for remote assistance associated with an autonomous vehicle. An operator can be selected to assist with autonomy tasks for the autonomous vehicle based at least in part on the operator attributes for the operator and the request parameters associated with the request. Remote assistance for the first autonomous vehicle can be initiated, facilitated by the first operator in response to the request for remote assistance.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: December 13, 2022
    Assignee: Uber Technologies, Inc.
    Inventors: Sean Shanshi Chen, Samann Ghorbanian-Matloob, Brent Justin Goldman, Michael Guanran Huang
  • Patent number: 11507111
    Abstract: Systems and methods for evaluating and deploying fleets of autonomous in operational domains are described. A computing system may obtain data indicative of one or more capabilities of at least one autonomous vehicle, data indicative of vehicle service dynamics in an operational domain over a period of time, and determining a plurality of resource performance parameters respectively for a plurality of autonomous vehicle fleets associated with potential deployment in the operational domain. Each autonomous vehicle fleet can be associated with a different number of autonomous vehicles The resource performance parameter for each autonomous vehicle fleet can be based at least in part on the one or more capabilities of the at least one autonomous vehicle and the vehicle service dynamics in the operational domain. The computing system can initiate an action associated with the operational domain based at least in part on the plurality of resource performance parameters.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: November 22, 2022
    Assignee: Uber Technologies, Inc.
    Inventors: Valerie Nina Chadha, Ye Yuan, Neil Stegall, Brent Justin Goldman, Kane Sweeney, Rei Chiang
  • Patent number: 11501643
    Abstract: Systems and methods for controlling an autonomous vehicle to reduce idle data usage and vehicle downtime are provided. In one example embodiment, a computing system can obtain data associated with autonomous vehicle(s) that are online with a service entity. The computing system can obtain data indicative of the geographic area with an imbalance in a number of vehicles associated with the geographic area. The computing system can determine a first autonomous vehicle for re-positioning with respect to the geographic area based at least in part on the data associated with the one or more autonomous vehicles and the data indicative of the geographic. The computing system can communicating data indicative of a first re-positioning assignment associated with the first autonomous vehicle. In some implementations, the computing system can generate vehicle service incentive to entice a vehicle provider to re-position its autonomous vehicles with respect to the geographic area.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: November 15, 2022
    Assignee: Uber Technologies, Inc.
    Inventors: Brent Justin Goldman, Leigh Gray Hagestad, Rei Chiang
  • Patent number: 11455891
    Abstract: Systems and methods for controlling an autonomous vehicle to reduce idle data usage and vehicle downtime are provided. In one example embodiment, a computing system can obtain data associated with autonomous vehicle(s) that are online with a service entity. The computing system can obtain data indicative of the geographic area with an imbalance in a number of vehicles associated with the geographic area. The computing system can determine a first autonomous vehicle for re-positioning with respect to the geographic area based at least in part on the data associated with the one or more autonomous vehicles and the data indicative of the geographic. The computing system can communicating data indicative of a first re-positioning assignment associated with the first autonomous vehicle. In some implementations, the computing system can generate vehicle service incentive to entice a vehicle provider to re-position its autonomous vehicles with respect to the geographic area.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: September 27, 2022
    Assignee: Uber Technologies, Inc.
    Inventors: Brent Justin Goldman, Leigh Gray Hagestad, Rei Chiang
  • Patent number: 11449055
    Abstract: Systems and methods for determining appropriate energy replenishment and controlling autonomous vehicles are provided. An example computer-implemented method can include obtaining one or more energy parameters associated with an autonomous vehicle. The method can include determining a refueling task for the autonomous vehicle based at least in part on the energy parameters associated with the autonomous vehicle. The refueling task comprises a first refueling task that is interruptible by a vehicle service assignment or a second refueling task that is not interruptible by the vehicle service assignment. The method can include communicating data indicative of the refueling task to the autonomous vehicle or to a second computing system that manages the autonomous vehicle. The method can include determining whether the refueling task for the autonomous vehicle has been accepted or rejected.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: September 20, 2022
    Assignee: Uber Technologies, Inc.
    Inventors: Brent Justin Goldman, Mark Yen, Shenglong Gao, Konrad Julian Niemiec, Jay A. Chen
  • Patent number: 11436926
    Abstract: Systems and methods for multi-autonomous vehicle servicing and control are provided. A method can include receiving a service request for a vehicle service. The method can include determining a vehicle route from the start location to the end location. The method can include identifying a plurality of candidate vehicles from a plurality of autonomous vehicles. The method can include obtaining data indicative of one or more operational capabilities for each candidate vehicle in the plurality of autonomous vehicles. The method can include segmenting the vehicle route into one or more route segments based on the one or more operational capabilities associated with each autonomous vehicle in the plurality of autonomous vehicles. The method can include assigning at least two candidate vehicles to perform the vehicle service by assigning at least one of the one or more route segments to each of the at least two candidate vehicle.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: September 6, 2022
    Assignee: Uber Technologies, Inc.
    Inventors: Shenglong Gao, Leigh Gray Hagestad, Jay A. Chen, Mark Yen, Brent Justin Goldman
  • Patent number: 11423340
    Abstract: A network computing system can coordinate on-demand transport serviced by transport providers operating throughout a transport service region. The transport providers can comprise a set of internal autonomous vehicles (AVs) and a set of third-party AVs. The system can receive a transport request from a requesting user of the transport service region, where the transport request indicates a pick-up location and a destination. The system can determine a subset of the transport providers to service the respective transport request, and executing a selection process among the subset of the transport providers to select a transport provider to service the transport request. The system may then transmit a transport assignment to the selected transport provider to cause the selected transport provider to service the transport request.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: August 23, 2022
    Assignee: Uber Technologies, Inc.
    Inventors: Brent Justin Goldman, Neil Stegall, Leigh Gray Hagestad
  • Publication number: 20210380126
    Abstract: Systems and methods for autonomous vehicle operations are provided. An example computer-implemented method includes obtaining data indicative of vehicle fleet feature(s) associated with an autonomous vehicle fleet. The method includes obtaining data indicative of a vehicle service request associated with a user, the vehicle service request indicating a request for a vehicle service. The method includes determining user feature(s) associated with the user. The method includes determining a compatibility of the user and the autonomous vehicle fleet for the vehicle service based at least in part on the fleet feature(s) and the user feature(s). Determining the compatibility can include predicting how the autonomous vehicle fleet will perform the vehicle service associated with the vehicle service request based at least in part on the fleet's autonomy capabilities. The method includes communicating data associated with the vehicle service request to a computing system associated with the autonomous vehicle fleet.
    Type: Application
    Filed: August 12, 2020
    Publication date: December 9, 2021
    Inventors: Zhe Liu, Mark Yen, Nathan Falk, Brent Justin Goldman, Shenglong Gao, Aaron Matthew Crum
  • Patent number: 11109249
    Abstract: Example aspects of the present disclosure are directed to systems and methods that generate simulated communications traffic to enable improved monitoring of the performance of a vehicle integration platform (VIP) associated with a service provider entity. For instance, the VIP can provide services to or otherwise communicate with a number of different clients (e.g., autonomous vehicles included in one or more fleets of autonomous vehicles). However, when, for various operational reasons, the one or more fleets of autonomous vehicle are not operating or otherwise communicating with the VIP, it can be difficult to assess whether the VIP is correctly operating. As such, according to an aspect of the present disclosure, a watchdog monitoring system can be included in or otherwise interoperate with the VIP.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: August 31, 2021
    Assignee: Uber Technologies, Inc.
    Inventors: John T. Campbell, Jr., Matthew James Way, Brent Justin Goldman
  • Publication number: 20210109524
    Abstract: Systems and methods for determining appropriate energy replenishment and controlling autonomous vehicles are provided. An example computer-implemented method can include obtaining one or more energy parameters associated with an autonomous vehicle. The method can include determining a refueling task for the autonomous vehicle based at least in part on the energy parameters associated with the autonomous vehicle. The refueling task comprises a first refueling task that is interruptible by a vehicle service assignment or a second refueling task that is not interruptible by the vehicle service assignment. The method can include communicating data indicative of the refueling task to the autonomous vehicle or to a second computing system that manages the autonomous vehicle. The method can include determining whether the refueling task for the autonomous vehicle has been accepted or rejected.
    Type: Application
    Filed: December 31, 2019
    Publication date: April 15, 2021
    Inventors: Brent Justin Goldman, Mark Yen, Shenglong Gao, Konrad Julian Niemiec, Jay A. Chen