Patents by Inventor Brett Warneke

Brett Warneke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11895588
    Abstract: Embodiments of the present disclosure provide systems and methods for maintaining timing precision in different operating modes of a device (e.g., a wireless node). A timing circuit may switch clock signals between two different modes (e.g., high power and low power) while preserving timing precision. In a high-power mode, the timing circuit may provide a high frequency clock signal, and in a lower-power mode, it may provide a low frequency clock signal. Moreover, the switching between the different clock signals may be synchronized to select edges of the low frequency clock signal.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: February 6, 2024
    Assignee: Analog Devices, Inc.
    Inventors: Brett Warneke, Gary Wayne Ng, Mark Alan Lemkin
  • Publication number: 20220046538
    Abstract: Embodiments of the present disclosure provide systems and methods for maintaining timing precision in different operating modes of a device (e.g., a wireless node). A timing circuit may switch clock signals between two different modes (e.g., high power and low power) while preserving timing precision. In a high-power mode, the timing circuit may provide a high frequency clock signal, and in a lower-power mode, it may provide a low frequency clock signal. Moreover, the switching between the different clock signals may be synchronized to select edges of the low frequency clock signal.
    Type: Application
    Filed: July 26, 2021
    Publication date: February 10, 2022
    Inventors: Brett Warneke, Gary Wayne Ng, Mark Alan Lemkin
  • Patent number: 10914789
    Abstract: A battery system monitor includes cell measurement circuits (CMCs) that each measure a voltage at or current through a pair of terminals of a respective associated battery module from among a plurality of plurality of battery modules in a battery system. Wireless communication transceivers (WCTs), each associated with a different CMC, transmit voltage or current measurement information of the associated CMC across a wireless communication link. A controller receives the voltage or current measurement information from the wireless communication transceivers for monitoring the state of operation of the battery system. Battery system monitoring is improved through synchronization of clocks in different CMCs or WCTs to enable synchronous sampling of multiple battery modules, through systems for determining relative positions of battery modules in a series coupling of battery modules between terminals of the battery system, and through improvements to the reliability of wireless communication.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: February 9, 2021
    Assignee: Analog Devices International Unlimited Company
    Inventors: Mark Alan Lemkin, Alain Pierre Levesque, Brett Warneke, David McLean Dwelley, Erik Soule, Lance Robert Doherty, Gordon Alexander Charles, Thor Nelson Juneau, Jonathan Noah Simon, Robert Dobkin
  • Publication number: 20190242949
    Abstract: A battery system monitor includes cell measurement circuits (CMCs) that each measure a voltage at or current through a pair of terminals of a respective associated battery module from among a plurality of plurality of battery modules in a battery system. Wireless communication transceivers (WCTs), each associated with a different CMC, transmit voltage or current measurement information of the associated CMC across a wireless communication link. A controller receives the voltage or current measurement information from the wireless communication transceivers for monitoring the state of operation of the battery system. Battery system monitoring is improved through synchronization of clocks in different CMCs or WCTs to enable synchronous sampling of multiple battery modules, through systems for determining relative positions of battery modules in a series coupling of battery modules between terminals of the battery system, and through improvements to the reliability of wireless communication.
    Type: Application
    Filed: June 28, 2017
    Publication date: August 8, 2019
    Inventors: Mark Alan Lemkin, Alain Pierre Levesque, Brett Warneke, David McLean Dwelley, Erik Soule, Lance Robert Doherty, Gordon Charles, Thor Nelson Juneau, Jonathan Noah Simon, Robert Dobkin
  • Patent number: 10152111
    Abstract: A network device includes a network interface circuit, a microprocessor, a timing circuit, and a microsequencer. The timing circuit is configured to, based on a primary timing signal, generate a time signature and switch the network device from an inactive state to an active state when the time signature satisfies a predetermined threshold length of time for packet transmission. The microsequencer circuit is configured to, in response to the network device being switched to the active state, activate and configure the network interface circuit for the packet transmission, independent of the microprocessor and delays encountered by the microprocessor. The device also reduces energy consumption by using a lower frequency secondary oscillator to maintain timing information when a higher frequency primary oscillator is inactivated.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: December 11, 2018
    Assignee: Linear Technology Corporation
    Inventors: Brett Warneke, Maxim Moiseev
  • Publication number: 20180046242
    Abstract: A network device includes a network interface circuit, a microprocessor, a timing circuit, and a microsequencer. The timing circuit is configured to, based on a primary timing signal, generate a time signature and switch the network device from an inactive state to an active state when the time signature satisfies a predetermined threshold length of time for packet transmission. The microsequencer circuit is configured to, in response to the network device being switched to the active state, activate and configure the network interface circuit for the packet transmission, independent of the microprocessor and delays encountered by the microprocessor. The device also reduces energy consumption by using a lower frequency secondary oscillator to maintain timing information when a higher frequency primary oscillator is inactivated.
    Type: Application
    Filed: October 9, 2017
    Publication date: February 15, 2018
    Inventor: Brett WARNEKE
  • Patent number: 9785219
    Abstract: A device reduces its energy consumption using a relatively lower frequency and lower power secondary oscillator to maintain timing information when a higher frequency and higher power primary oscillator is inactivated. The secondary oscillator maintains timing information at a higher resolution than the period of the oscillator, so as to conserve synchronization when the higher frequency, higher power primary oscillator is inactivated. In some embodiments, a microsequencer is programmably configured to control an integrated radio receiver and transmitter using less power than an associated microprocessor would use to perform the same functions. In other embodiments, flexible event timing facilitates the merging of wake-up events to reduce the energy consumed by wake-up operations in the device.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: October 10, 2017
    Assignee: Linear Technology Corporation
    Inventor: Brett Warneke
  • Patent number: 9104418
    Abstract: A device reduces its energy consumption using a relatively lower frequency and lower power secondary oscillator to maintain timing information when a higher frequency and higher power primary oscillator is inactivated. The secondary oscillator maintains timing information at a higher resolution than the period of the oscillator, so as to conserve synchronization when the higher frequency, higher power primary oscillator is inactivated. In some embodiments, a microsequencer is programmably configured to control an integrated radio receiver and transmitter using less power than an associated microprocessor would use to perform the same functions. In other embodiments, flexible event timing facilitates the merging of wake-up events to reduce the energy consumed by wake-up operations in the device.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: August 11, 2015
    Assignee: LINEAR TECHNOLOGY CORPORATION
    Inventors: Brett Warneke, Maxim Moiseev
  • Publication number: 20150050926
    Abstract: A device reduces its energy consumption using a relatively lower frequency and lower power secondary oscillator to maintain timing information when a higher frequency and higher power primary oscillator is inactivated. The secondary oscillator maintains timing information at a higher resolution than the period of the oscillator, so as to conserve synchronization when the higher frequency, higher power primary oscillator is inactivated. In some embodiments, a microsequencer is programmably configured to control an integrated radio receiver and transmitter using less power than an associated microprocessor would use to perform the same functions. In other embodiments, flexible event timing facilitates the merging of wake-up events to reduce the energy consumed by wake-up operations in the device.
    Type: Application
    Filed: October 28, 2014
    Publication date: February 19, 2015
    Inventors: Brett WARNEKE, Maxim MOISEEV
  • Publication number: 20150042389
    Abstract: A device reduces its energy consumption using a relatively lower frequency and lower power secondary oscillator to maintain timing information when a higher frequency and higher power primary oscillator is inactivated. The secondary oscillator maintains timing information at a higher resolution than the period of the oscillator, so as to conserve synchronization when the higher frequency, higher power primary oscillator is inactivated. In some embodiments, a microsequencer is programmably configured to control an integrated radio receiver and transmitter using less power than an associated microprocessor would use to perform the same functions. In other embodiments, flexible event timing facilitates the merging of wake-up events to reduce the energy consumed by wake-up operations in the device.
    Type: Application
    Filed: October 27, 2014
    Publication date: February 12, 2015
    Inventor: Brett WARNEKE
  • Patent number: 8943352
    Abstract: A device reduces its energy consumption using a relatively lower frequency and lower power secondary oscillator to maintain timing information when a higher frequency and higher power primary oscillator is inactivated. The secondary oscillator maintains timing information at a higher resolution than the period of the oscillator, so as to conserve synchronization when the higher frequency, higher power primary oscillator is inactivated. In some embodiments, a microsequencer is programmably configured to control an integrated radio receiver and transmitter using less power than an associated microprocessor would use to perform the same functions. In other embodiments, flexible event timing facilitates the merging of wake-up events to reduce the energy consumed by wake-up operations in the device.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: January 27, 2015
    Assignee: Dust Networks, Inc.
    Inventor: Brett Warneke
  • Patent number: 7898322
    Abstract: Frequency demodulation of a signal is disclosed. A first edge event and a second edge event are detected in a signal. The second edge event is an edge event subsequent in time to the first edge event. A data bit based at least in part on a timing interval between the first edge event and the second edge event is determined.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: March 1, 2011
    Assignee: Dust Networks, Inc.
    Inventors: Mark Lemkin, Brett Warneke
  • Publication number: 20020151281
    Abstract: A front end module (10, 30) for a low weight, low power communications system. The front end module (10) utilizes RF microelectromechanical (MEM) switches (16, 18, 20, 110, 112, 156) for dynamic reconfiguration capability. Components (12, 14, 22, 24, 26, 28) are shared for both the transmit and receive modes, thereby reducing the number of components required by the system (10, 30).
    Type: Application
    Filed: May 30, 2002
    Publication date: October 17, 2002
    Applicant: Hughes Electronics Corporation
    Inventors: Hossein Izadpanah, Robert R. S. Barnard, Juan F. Lam, Brett A. Warneke, Gary M. Lindgren, Robert Y. Loo
  • Patent number: 6069587
    Abstract: A multiband millimeterwave antenna system for communicating signals in multiple frequency bands is disclosed. A main antenna body is connected to antenna extensions by micro-electro-mechanical switches. By opening and closing the switches, the length of the antenna can be altered. The antenna is coupled to a microstrip feed line by an aperture. A series of matching stubs match the impedance of the feed line for the various signal frequencies.
    Type: Grant
    Filed: May 15, 1998
    Date of Patent: May 30, 2000
    Assignee: Hughes Electronics Corporation
    Inventors: Jonathan Lynch, Stan Livingston, Jar J. Lee, Robert Y. Loo, Juan Lam, Adele Schmitz, Debabani Choudhury, Julia Brown, Daniel J. Hyman, Brett Warneke
  • Patent number: 6046659
    Abstract: Methods for the design and fabrication of micro-electro-mechanical switches are disclosed. Two different switch designs with three different switch fabrication techniques are presented for a total of six switch structures. Each switch has a multiple-layer armature with a suspended biasing electrode and a conducting transmission line affixed to the structural layer of the armature. A conducting dimple is connected to the conducting line to provide a reliable region of contact for the switch. The switch is fabricated using silicon nitride as the armature structural layer and silicon dioxide as the sacrificial layer supporting the armature during fabrication. Hydrofluoric acid is used to remove the silicon dioxide layer with post-processing in a critical point dryer to increase yield.
    Type: Grant
    Filed: May 15, 1998
    Date of Patent: April 4, 2000
    Assignees: Hughes Electronics Corporation, Rosemont Aerospace, Inc.
    Inventors: Robert Y. Loo, Adele Schmitz, Julia Brown, Jonathan Lynch, Debabani Choudhury, James Foschaar, Daniel J. Hyman, Brett Warneke, Juan Lam, Tsung-Yuan Hsu, Jae Lee, Mehran Mehregany
  • Patent number: 6043727
    Abstract: A reconfigurable filter system designed using micro-elecro-mechanical (MEM) switches is disclosed. The filter comprises a transmission line with one or more filter stubs coupled to the transmission line by MEM switches. The impedance of the filter system is altered by selectively opening and closing the MEM switches, which alters the filter characteristics of the filter system. Alternatively, the characteristics of the filter system are altered by using the MEM switches to selectively alter the length of filter stubs attached to the transmission line.
    Type: Grant
    Filed: May 15, 1998
    Date of Patent: March 28, 2000
    Assignee: Hughes Electronics Corporation
    Inventors: Brett Warneke, Juan Lam, Adele Schmitz, Julia Brown, Darren Atkinson, Daniel J. Hyman, Robert Y. Loo