Patents by Inventor Brian Zambrowicz

Brian Zambrowicz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240093316
    Abstract: Methods and compositions are provided herein for assessing CRISPR/Cas-mediated non-homologous end joining (NHEJ) activity and/or CRISPR/Cas-induced recombination of a target genomic locus with an exogenous donor nucleic acid in vivo and ex vivo. The methods and compositions employ cells and non-human animals comprising a Cas expression cassette such as a genomically integrated Cas expression cassette so that the Cas protein can be constitutively available or available in a tissue-specific or temporal-specific manner. Methods and compositions are also provided for making and using these non-human animals, including use of these non-human animals to assess CRISPR/Cas activity in vivo via adeno-associated virus (AAV)-mediated delivery of guide RNAs to the non-human animals.
    Type: Application
    Filed: November 27, 2023
    Publication date: March 21, 2024
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Guochun Gong, Charleen Hunt, Daisuke Kajimura, Suzanne Hartford, Brian Zambrowicz
  • Publication number: 20240084293
    Abstract: Cas-protein-ready tau biosensor cells, CRISPR/Cas synergistic activation mediator (SAM)-ready tau biosensor cells, and methods of making and using such cells to screen for genetic modifiers of tau seeding or aggregation are provided. Reagents and methods for sensitizing such cells to tau seeding activity or tau aggregation or for causing tau aggregation are also provided.
    Type: Application
    Filed: November 6, 2023
    Publication date: March 14, 2024
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Marine Prissette, Matthew Koss, Wen Fury, Brian Zambrowicz
  • Publication number: 20240076613
    Abstract: BANF1, PPP2CA, and ANKLE2 were identified as genes that promote tau aggregation when disrupted. Improved tauopathy models such as cells, tissues, or animals having mutations in or inhibition of expression of BANF1 and/or PPP2CA and/or ANKLE2 are provided. Methods of using such improved tauopathy models for assessing therapeutic candidates for the treatment of a tauopathy, methods of making the improved tauopathy models, and methods of accelerating or exacerbating tau aggregation in a tauopathy model are also provided.
    Type: Application
    Filed: November 6, 2023
    Publication date: March 7, 2024
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Marine Prissette, Matthew Koss, Mathieu Desclaux, John McWhirter, Arijit Bhowmick, David Frendewey, Brian Zambrowicz, Claudia Racioppi
  • Patent number: 11891618
    Abstract: Non-human animal cells and non-human animals comprising a humanized TTR locus comprising a beta-slip mutation and methods of using such non-human animal cells and non-human animals are provided. Non-human animal cells or non-human animals comprising a humanized TTR locus comprising a beta-slip mutation express a human transthyretin protein or a chimeric transthyretin protein, fragments of which are from human transthyretin. Methods are provided for using such non-human animals comprising a humanized TTR locus to assess in vivo efficacy of human-TTR-targeting reagents such as nuclease agents designed to target human TTR.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: February 6, 2024
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Jeffery Haines, Keith Crosby, Meghan Drummond Samuelson, David Frendewey, Brian Zambrowicz, Andrew J. Murphy
  • Patent number: 11866794
    Abstract: Methods and compositions are provided herein for assessing CRISPR/Cas-mediated non-homologous end joining (NHEJ) activity and/or CRISPR/Cas-induced recombination of a target genomic locus with an exogenous donor nucleic acid in vivo and ex vivo. The methods and compositions employ cells and non-human animals comprising a Cas expression cassette such as a genomically integrated Cas expression cassette so that the Cas protein can be constitutively available or available in a tissue-specific or temporal-specific manner. Methods and compositions are also provided for making and using these non-human animals, including use of these non-human animals to assess CRISPR/Cas activity in vivo via adeno-associated virus (AAV)-mediated delivery of guide RNAs to the non-human animals.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: January 9, 2024
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Guochun Gong, Charleen Hunt, Daisuke Kajimura, Suzanne Hartford, Brian Zambrowicz
  • Publication number: 20230416728
    Abstract: Cas-protein-ready tau biosensor cells, CRISPR/Cas synergistic activation mediator (SAM)-ready tau biosensor cells, and methods of making and using such cells to screen for genetic vulnerability associated with tau aggregation are provided.
    Type: Application
    Filed: August 31, 2023
    Publication date: December 28, 2023
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Marine Prissette, Matthew Koss, Yu Bai, Brian Zambrowicz
  • Patent number: 11845931
    Abstract: Cas-protein-ready tau biosensor cells, CRISPR/Cas synergistic activation mediator (SAM)-ready tau biosensor cells, and methods of making and using such cells to screen for genetic modifiers of tau seeding or aggregation are provided. Reagents and methods for sensitizing such cells to tau seeding activity or tau aggregation or for causing tau aggregation are also provided.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: December 19, 2023
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Marine Prissette, Matthew Koss, Wen Fury, Brian Zambrowicz
  • Patent number: 11845957
    Abstract: BANF1, PPP2CA, and ANKLE2 were identified as genes that promote tau aggregation when disrupted. Improved tauopathy models such as cells, tissues, or animals having mutations in or inhibition of expression of BANF1 and/or PPP2CA and/or ANKLE2 are provided. Methods of using such improved tauopathy models for assessing therapeutic candidates for the treatment of a tauopathy, methods of making the improved tauopathy models, and methods of accelerating or exacerbating tau aggregation in a tauopathy model are also provided.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: December 19, 2023
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Marine Prissette, Matthew Koss, Mathieu Desclaux, John McWhirter, Arijit Bhowmick, David Frendewey, Brian Zambrowicz, Claudia Racioppi
  • Publication number: 20230337645
    Abstract: Nuclease-mediated methods for expanding repeats already present at a genomic locus are provided. Non-human animal genomes, non-human animal cells, and non-human animals comprising a heterologous hexanucleotide repeat expansion sequence inserted at an endogenous C9orf72 locus and methods of making such non-human animal cells and non-human animals through nuclease-mediated repeat expansion are also provided. Methods of using the non-human animal cells or non-human animals to identify therapeutic candidates that may be used to prevent, delay or treat one or more neurodegenerative disorders associated with repeat expansion at the C9orf72 locus are also provided.
    Type: Application
    Filed: May 12, 2023
    Publication date: October 26, 2023
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Daisuke Kajimura, Aarti Sharma-Kanning, Brittany Dubose, Gustavo Droguett, Chia-Jen Siao, Junko Kuno, David Frendewey, Brian Zambrowicz
  • Patent number: 11781131
    Abstract: Cas-protein-ready tau bio sensor cells, CRISPR/Cas synergistic activation mediator (SAM)-ready tau biosensor cells, and methods of making and using such cells to screen for genetic vulnerability associated with tau aggregation are provided.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: October 10, 2023
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Marine Prissette, Matthew Koss, Yu Bai, Brian Zambrowicz
  • Publication number: 20230293727
    Abstract: Provided herein are methods of inhibiting tau aggregation in a cell or a subject, comprising administering a LEM domain-containing protein 2 (LEMD2), a charged multivesicular body protein 7 (CHMP7), or an inner nuclear membrane protein Man 1 (LEMD3) or a nucleic acid encoding the LEMD2, the CHMP7, or the LEMD3 to the cell or the subject. Also provided herein are methods of treating or preventing a tauopathy in a subject, comprising administering LEMD2, CHMP7, or LEMD3 or a nucleic acid encoding the LEMD2, the CHMP7, or the LEMD3 to the subject, wherein the LEMD2, the CHMP7, or the LEMD3 inhibits tau aggregation in a cell in the subject. Also provided are nucleic acids encoding LEMD2, CHMP7, or LEMD3 (e.g., in an expression construct and operably linked to a heterologous promoter).
    Type: Application
    Filed: October 26, 2022
    Publication date: September 21, 2023
    Inventors: Marine Prissette, Wen Fury, Daria Fedorova, Claudia Racioppi, Brian Zambrowicz
  • Publication number: 20230232797
    Abstract: Non-human animal genomes, non-human animal cells, and non-human animals comprising a humanized albumin (ALB) locus and methods of making and using such non-human animal genomes, non-human animal cells, and non-human animals are provided. Non-human animal cells or non-human animals comprising a humanized albumin locus express a human albumin protein or a chimeric albumin protein, fragments of which are from human albumin. Methods are provided for using such non-human animals comprising a humanized albumin locus to assess in vivo efficacy of human-albumin-targeting reagents such as nuclease agents designed to target human albumin.
    Type: Application
    Filed: February 27, 2023
    Publication date: July 27, 2023
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Qing Fang, Chia-Jen Siao, Dan Chalothorn, KehDih Lai, Leah Sabin, Rachel Sattler, Brian Zambrowicz, Lori Morton
  • Patent number: 11690362
    Abstract: Nuclease-mediated methods for expanding repeats already present at a genomic locus are provided. Non-human animal genomes, non-human animal cells, and non-human animals comprising a heterologous hexanucleotide repeat expansion sequence inserted at an endogenous C9orf72 locus and methods of making such non-human animal cells and non-human animals through nuclease-mediated repeat expansion are also provided. Methods of using the non-human animal cells or non-human animals to identify therapeutic candidates that may be used to prevent, delay or treat one or more neurodegenerative disorders associated with repeat expansion at the C9orf72 locus are also provided.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: July 4, 2023
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: Daisuke Kajimura, Aarti Sharma-Kanning, Brittany Dubose, Gustavo Droguett, Chia-Jen Siao, Junko Kuno, David Frendewey, Brian Zambrowicz
  • Publication number: 20230123787
    Abstract: This disclosure relates to an animal model of human disease. More specifically, this disclosure relates to a rodent model of mood disorders such as unipolar depression and an anxiety disorder. Disclosed herein are genetically modified rodent animals that carry a humanized G protein-coupled receptor 156 (GPR156) gene that encodes a mutant human GPR156 protein comprising Asp at an amino acid position corresponding to position 533 in a full length wild type human GPR156 protein.
    Type: Application
    Filed: August 10, 2022
    Publication date: April 20, 2023
    Applicant: REGENERON PHARMACEUTICALS, INC.
    Inventors: Meghan Drummond Samuelson, Brian Zambrowicz, Ka-Man Venus Lai, Charleen Hunt, Susannah Brydges, Andrew J. Murphy, Claudia Gonzaga-Jauregui, Jose Rojas, Nicole Alessandri-Haber, Robert Breese, Susan D. Croll
  • Publication number: 20230123296
    Abstract: Non-human animal cells and non-human animals comprising CRISPR/Cas synergistic activation mediator system components and methods of making and using such non-human animal cells and non-human animals are provided. Methods are provided for using such non-human animals to increase expression of target genes in vivo and to assess CRISPR/Cas synergistic activation mediator systems for the ability to increase expression of target genes in vivo.
    Type: Application
    Filed: November 1, 2022
    Publication date: April 20, 2023
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Charleen Hunt, Suzanne Hartford, Guochun Gong, Brian Zambrowicz
  • Publication number: 20230114649
    Abstract: The disclosure relates to double stranded ribonucleic acid (dsRNAi) agents and compositions targeting a human chromosome 9 open reading frame 72 (C9orf72) gene, as well as methods of inhibiting expression of a C9orf72 gene and methods of treating subjects having a C9orf72-associated disease or disorder, e.g., C9orf72 amyotrophic lateral sclerosis/frontotemporal dementia or Huntington-Like Syndrome Due To C9orf72 Expansions, using such dsRNAi agents and compositions.
    Type: Application
    Filed: June 9, 2022
    Publication date: April 13, 2023
    Inventors: Elane Fishilevich, Stuart Milstein, Kirk Brown, Tracy Zimmermann, James D. McIninch, David Frendewey, Eric Chiao, Aarti Sharma-Kanning, Anthony Gagliardi, Gustavo Droguett, Brittany Dubose, Brian Zambrowicz
  • Patent number: 11622547
    Abstract: Non-human animal genomes, non-human animal cells, and non-human animals comprising a humanized albumin (ALB) locus and methods of making and using such non-human animal genomes, non-human animal cells, and non-human animals are provided. Non-human animal cells or non-human animals comprising a humanized albumin locus express a human albumin protein or a chimeric albumin protein, fragments of which are from human albumin. Methods are provided for using such non-human animals comprising a humanized albumin locus to assess in vivo efficacy of human-albumin-targeting reagents such as nuclease agents designed to target human albumin.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: April 11, 2023
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: Qing Fang, Chia-Jen Siao, Dan Chalothorn, KehDih Lai, Leah Sabin, Rachel Sattler, Brian Zambrowicz, Lori Morton
  • Publication number: 20230102342
    Abstract: Non-human animal genomes, non-human animal cells, and non-human animals comprising a humanized TTR locus comprising a V30M mutation and methods of making and using such non-human animal genomes, non-human animal cells, and non-human animals are provided. Non-human animal cells or non-human animals comprising a humanized TTR locus express a human TTR protein or a chimeric TTR protein, fragments of which are from human TTR. Methods are provided for using such non-human animals comprising a humanized TTR locus to assess in vivo efficacy of human-TTR-targeting reagents such as nuclease agents designed to target human TTR.
    Type: Application
    Filed: March 23, 2021
    Publication date: March 30, 2023
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Meghan Drummond Samuelson, Jeffery Haines, Charleen Hunt, Guochun Gong, Brian Zambrowicz
  • Publication number: 20230078551
    Abstract: Non-human animal genomes, non-human animal cells, and non-human animals comprising a humanized TTR locus and methods of using such non-human animal genomes, non-human animal cells, and non-human animals are provided. Non-human animal cells or non-human animals comprising a humanized TTR locus express a human transthyretin protein or a chimeric transthyretin protein, fragments of which are from human transthyretin. Methods are provided for using such non-human animals comprising a humanized TTR locus to assess in vivo efficacy of human-TTR-targeting reagents such as nuclease agents designed to target human TTR. Methods are also provided for making such non-human animals comprising a humanized TTR locus.
    Type: Application
    Filed: November 22, 2022
    Publication date: March 16, 2023
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Meghan Drummond Samuelson, Jeffery Haines, Suzanne Hartford, David Frendewey, Brian Zambrowicz, Andrew J. Murphy
  • Publication number: 20230001019
    Abstract: Nucleic acid constructs and compositions that allow insertion and/or expression of a retinoschisin coding sequence are provided. Nuclease agents targeting RS1 loci are provided. Compositions and methods of using such constructs for integration into a target genomic locus and/or expression in a cell are also provided. Methods of treating X-linked juvenile retinoschisis using the nucleic acid constructs and compositions are also provided.
    Type: Application
    Filed: November 7, 2020
    Publication date: January 5, 2023
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Charleen Hunt, Yang Liu, Guochun Gong, Carmelo Romano, Brian Zambrowicz