Patents by Inventor Bruno Vuillemin

Bruno Vuillemin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11228056
    Abstract: A process for fabrication of a battery that includes providing a colloidal suspension of particles conducting lithium ions and providing two conducting substrates as battery current collectors, at least one surface of the conducting substrates being at least partially coated with one of a cathode film and an anode film, and depositing an electrolyte film by electrophoresis, from a suspension of electrolyte material particles, on at least one of said anode film, said cathode film and said conducting substrates.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: January 18, 2022
    Assignee: I-TEN
    Inventors: Fabien Gaben, Frédéric Bouyer, Bruno Vuillemin
  • Patent number: 10749206
    Abstract: Process for fabrication of all-solid-state thin film batteries, said batteries comprising a film of anode materials, a film of solid electrolyte materials and a film of cathode materials, in which: each of these three films is deposited using an electrophoresis process, the anode film and the cathode film are each deposited on a conducting substrate, preferably a thin metal sheet or band, or a metalized insulating sheet or band or film, said conducting substrates or their conducting elements being useable as battery current collectors, the electrolyte film is deposited on the anode and/or cathode film, and in which said process also comprises at least one step in which said sheets or bands are stacked so as to form at least one battery with a “collector/anode/electrolyte/cathode/collector” type of stacked structure.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: August 18, 2020
    Assignee: I-TEN
    Inventors: Fabien Gaben, Frédéric Bouyer, Bruno Vuillemin
  • Publication number: 20200076001
    Abstract: Process for fabrication of all-solid-state thin film batteries, said batteries comprising a film of anode materials (anode film), a film of solid electrolyte materials (electrolyte film) and a film of cathode materials (cathode film) in electrical contact with a cathode collector, characterized in that: a first electrode film (cathode or anode) is deposited by electrophoresis on a conducting substrate or a substrate with at least one conducting zone, said substrate or said at least one conducting zone possibly being used as a collector of said electrode current (anode or cathode current) of the micro-battery, the electrolyte film is deposited by electrophoresis on said first electrode film, a second electrode film (anode or cathode) is deposited on the electrolyte film either by electrophoresis or by a vacuum deposition process.
    Type: Application
    Filed: May 13, 2019
    Publication date: March 5, 2020
    Inventors: Fabien GABEN, Frédéric BOUYER, Bruno VUILLEMIN
  • Patent number: 10577709
    Abstract: Process for deposition of a dense thin film comprising at least one material Px on a substrate, in which: (a) a colloidal suspension is procured containing nanoparticles of at least one material Px, (b) said substrate is immersed in said colloidal suspension, jointly with a counter electrode, (c) an electrical voltage is applied between said substrate and said counter electrode so as to obtain the electrophoretic deposition of a compact film comprising nanoparticles of said at least one material Px on said substrate, (d) said compact film is dried, (e) said film is mechanically consolidated, (f) thermal consolidation is carried out at a temperature TR that does not exceed 0.7 times (and preferably does not exceed 0.5 times) the melting or decomposition temperature (expressed in ° C.) of the material Px that melts at the lowest temperature, preferably at a temperature of between 160° C. and 600° C., and even more preferably at a temperature of between 160° C. and 400° C.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: March 3, 2020
    Assignee: I-TEN
    Inventors: Frédéric Bouyer, Bruno Vuillemin, Fabien Gaben
  • Patent number: 10340555
    Abstract: Process for fabrication of all-solid-state thin film batteries, said batteries comprising a film of anode materials (anode film), a film of solid electrolyte materials (electrolyte film) and a film of cathode materials (cathode film) in electrical contact with a cathode collector, characterized in that: a first electrode film (cathode or anode) is deposited by electrophoresis on a conducting substrate or a substrate with at least one conducting zone, said substrate or said at least one conducting zone possibly being used as a collector of said electrode current (anode or cathode current) of the micro-battery, the electrolyte film is deposited by electrophoresis on said first electrode film, a second electrode film (anode or cathode) is deposited on the electrolyte film either by electrophoresis or by a vacuum deposition process.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: July 2, 2019
    Assignee: I-TEN
    Inventors: Fabien Gaben, Frédéric Bouyer, Bruno Vuillemin
  • Patent number: 10340548
    Abstract: Process for the fabrication of a solid electrolyte thin film for an all-solid state Li-ion battery comprising steps to: a) Procure a possibly conducting substrate film, possibly coated with an anode or cathode film, b) Deposit an electrolyte thin film by electrophoresis, from a suspension of particles of electrolyte material, on said substrate and/or said previously formed anode or cathode film, c) Dry the film thus obtained, d) Consolidate the electrolyte thin film obtained in the previous step by mechanical compression and/or heat treatment.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: July 2, 2019
    Assignee: I-TEN
    Inventors: Fabien Gaben, Frédéric Bouyer, Bruno Vuillemin
  • Publication number: 20190173129
    Abstract: A process for fabrication of a battery that includes providing a colloidal suspension of particles conducting lithium ions and providing two conducting substrates as battery current collectors, at least one surface of the conducting substrates being at least partially coated with one of a cathode film and an anode film, and depositing an electrolyte film by electrophoresis, from a suspension of electrolyte material particles, on at least one of said anode film, said cathode film and said conducting substrates.
    Type: Application
    Filed: February 12, 2019
    Publication date: June 6, 2019
    Inventors: Fabien GABEN, Frédéric BOUYER, Bruno VUILLEMIN
  • Publication number: 20190036152
    Abstract: Process for fabrication of all-solid-state thin film batteries, said batteries comprising a film of anode materials, a film of solid electrolyte materials and a film of cathode materials, in which: each of these three films is deposited using an electrophoresis process, the anode film and the cathode film are each deposited on a conducting substrate, preferably a thin metal sheet or band, or a metalized insulating sheet or band or film, said conducting substrates or their conducting elements being useable as battery current collectors, the electrolyte film is deposited on the anode and/or cathode film, and in which said process also comprises at least one step in which said sheets or bands are stacked so as to form at least one battery with a “collector/anode/electrolyte/cathode/collector” type of stacked structure.
    Type: Application
    Filed: June 26, 2018
    Publication date: January 31, 2019
    Inventors: Fabien GABEN, Frédéric BOUYER, Bruno VUILLEMIN
  • Publication number: 20190036172
    Abstract: Process for fabrication of all-solid-state thin film batteries, said batteries comprising a film of anode materials, a film of solid electrolyte materials and a film of cathode materials, in which: each of these three films is deposited using an electrophoresis process, the anode film and the cathode film are each deposited on a conducting substrate, preferably a thin metal sheet or band, or a metalized insulating sheet or band or film, said conducting substrates or their conducting elements being useable as battery current collectors, the electrolyte film is deposited on the anode and/or cathode film, and in which said process also comprises at least one step in which said sheets or bands are stacked so as to form at least one battery with a “collector/anode/electrolyte/cathode/collector” type of stacked structure.
    Type: Application
    Filed: June 26, 2018
    Publication date: January 31, 2019
    Inventors: Fabien GABEN, Frédéric BOUYER, Bruno VUILLEMIN
  • Patent number: 10047451
    Abstract: A process for fabrication of all-solid-state thin film batteries, may include batteries including a film of anode materials, a film of solid electrolyte materials and a film of cathode materials. Each of these three films may be deposited using an electrophoresis process. The anode film and the cathode film may each be deposited on a conducting substrate, preferably a thin metal sheet or band, or a metalized insulating sheet or band or film. The conducting substrates or their conducting elements may be useable as battery current collectors, the electrolyte film may be deposited on the anode and/or cathode film. The process may also include stacking the sheets or bands so as to form at least one battery with a “collector/anode/electrolyte/cathode/collector” type of stacked structure.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: August 14, 2018
    Assignee: I-TEN
    Inventors: Fabien Gaben, Frédéric Bouyer, Bruno Vuillemin
  • Publication number: 20180108904
    Abstract: An electrode film of an all-solid-state battery, an all-solid-state battery, and an electrode of an all-solid-state battery, which are fabricated by a process that includes thermally consolidating an electrode film by sintering at a temperature that does not exceed a predetermined threshold of a lowest melting temperature between an anode material and an cathode material.
    Type: Application
    Filed: April 17, 2017
    Publication date: April 19, 2018
    Inventors: Fabien GABEN, Frédéric BOUYER, Bruno VUILLEMIN
  • Patent number: 9660252
    Abstract: The invention relates to a process for fabrication of an electrode film in an all-solid-state battery comprising successive steps to: a) Procure a substrate, preferably a conducting substrate, b) Deposit an electrode film on said substrate by electrophoresis, from a suspension containing particles of electrode materials, c) Dry the film obtained in the previous step, d) Thermal consolidation of the electrode film obtained in the previous step by sintering, sintering being done at a temperature TR that preferably does not exceed 0.7 times the melting temperature (expressed in ° C.), even more preferably does not exceed 0.5 times the melting temperature (expressed in ° C.), and much more preferably does not exceed 0.3 times the melting temperature (expressed in ° C.) of the electrode material that melts at the lowest temperature.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: May 23, 2017
    Assignee: I-TEN
    Inventors: Fabien Gaben, Frédéric Bouyer, Bruno Vuillemin
  • Publication number: 20150104713
    Abstract: The invention relates to a process for fabrication of an electrode film in an all-solid-state battery comprising successive steps to: a) Procure a substrate, preferably a conducting substrate, b) Deposit an electrode film on said substrate by electrophoresis, from a suspension containing particles of electrode materials, c) Dry the film obtained in the previous step, d) Thermal consolidation of the electrode film obtained in the previous step by sintering, sintering being done at a temperature TR that preferably does not exceed 0.7 times the melting temperature (expressed in ° C.), even more preferably does not exceed 0.5 times the melting temperature (expressed in ° C.), and much more preferably does not exceed 0.3 times the melting temperature (expressed in ° C.) of the electrode material that melts at the lowest temperature.
    Type: Application
    Filed: October 30, 2012
    Publication date: April 16, 2015
    Applicant: I-TEN
    Inventors: Fabien Gaben, Frédéric Bouyer, Bruno Vuillemin
  • Publication number: 20140339085
    Abstract: Process for deposition of a dense thin film comprising at least one material Px on a substrate, in which: (a) a colloidal suspension is procured containing nanoparticles of at least one material Px, (b) said substrate is immersed in said colloidal suspension, jointly with a counter electrode, (c) an electrical voltage is applied between said substrate and said counter electrode so as to obtain the electrophoretic deposition of a compact film comprising nanoparticles of said at least one material Px on said substrate, (d) said compact film is dried, (e) said film is mechanically consolidated, (f) thermal consolidation is carried out at a temperature TR that does not exceed 0.7 times (and preferably does not exceed 0.5 times) the melting or decomposition temperature (expressed in ° C.) of the material Px that melts at the lowest temperature, preferably at a temperature of between 160° C. and 600° C., and even more preferably at a temperature of between 160° C. and 400° C.
    Type: Application
    Filed: October 30, 2012
    Publication date: November 20, 2014
    Inventors: Frédéric Bouyer, Bruno Vuillemin, Fabien Gaben
  • Publication number: 20140308570
    Abstract: Process for fabrication of all-solid-state thin film batteries, said batteries comprising a film of anode materials (anode film), a film of solid electrolyte materials (electrolyte film) and a film of cathode materials (cathode film) in electrical contact with a cathode collector, characterized in that: a first electrode film (cathode or anode) is deposited by electrophoresis on a conducting substrate or a substrate with at least one conducting zone, said substrate or said at least one conducting zone possibly being used as a collector of said electrode current (anode or cathode current) of the micro-battery, the electrolyte film is deposited by electrophoresis on said first electrode film, a second electrode film (anode or cathode) is deposited on the electrolyte film either by electrophoresis or by a vacuum deposition process.
    Type: Application
    Filed: October 30, 2012
    Publication date: October 16, 2014
    Inventors: Fabien Gaben, Frédéric Bouyer, Bruno Vuillemin
  • Publication number: 20140308576
    Abstract: Process for fabrication of all-solid-state thin film batteries, said batteries comprising a film of anode materials, a film of solid electrolyte materials and a film of cathode materials, in which: each of these three films is deposited using an electrophoresis process, the anode film and the cathode film are each deposited on a conducting substrate, preferably a thin metal sheet or band, or a metalized insulating sheet or band or film, said conducting substrates or their conducting elements being useable as battery current collectors, the electrolyte film is deposited on the anode and/or cathode film, and in which said process also comprises at least one step in which said sheets or bands are stacked so as to form at least one battery with a “collector/anode/electrolyte/cathode/collector” type of stacked structure.
    Type: Application
    Filed: October 30, 2012
    Publication date: October 16, 2014
    Inventors: Fabien Gaben, Frédéric Bouyer, Bruno Vuillemin
  • Publication number: 20140308571
    Abstract: Process for the fabrication of a solid electrolyte thin film for an all-solid state Li-ion battery comprising steps to: a) Procure a possibly conducting substrate film, possibly coated with an anode or cathode film, b) Deposit an electrolyte thin film by electrophoresis, from a suspension of particles of electrolyte material, on said substrate and/or said previously formed anode or cathode film, c) Dry the film thus obtained, d) Consolidate the electrolyte thin film obtained in the previous step by mechanical compression and/or heat treatment.
    Type: Application
    Filed: October 30, 2012
    Publication date: October 16, 2014
    Inventors: Fabien Gaben, Frédéric Bouyer, Bruno Vuillemin
  • Patent number: 8541542
    Abstract: The present invention relates to a process for reducing residuals content in a vinyl aromatic polymer, said residuals comprising essentially unpolymerized vinyl aromatic monomer, wherein the vinyl aromatic polymer in the molten state is brought in contact with a solid in powder capable to catalyze the alkylation of said residual vinyl aromatic monomer on the vinyl aromatic polymer. Advantage of the present invention is a sharp reduction of the unpolymerized vinyl aromatic monomer in the vinyl aromatic polymer without generating a new residual and without inducing a colored vinyl aromatic polymer. The present invention also relates to said vinyl aromatic polymer having a low residuals content.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: September 24, 2013
    Assignee: Total Research & Technology Feluy
    Inventors: Thomas-Maurice Roussel, Bruno Vuillemin, Francois Fajula
  • Patent number: 8399561
    Abstract: The present invention relates to a process for preparing a high impact monovinylaromatic polymer comprising admixing a rubber, at least one monovinylaromatic monomer and optionally one or more comonomer in the presence of at least a borane complex of the L-BH3 type wherein L is a Lewis base and polymerizing the monovinylaromatic monomer. The borane complex initiator, L may be an ether (e.g THF, tetrahydrofurane), a thioether (e.g dimethylthioether) or an amine. A preferred complex is an amine borane such as by way of example triethylamine borane. The present invention also relates to a high impact monovinylaromatic polymer having a weight ratio of grafted monovinylaromatic monomer and optional comonomer to the initial monovinylaromatic monomer and optional comonomer above 0.1%, advantageously above 2% and preferably in the range 2 to 4%. The invention is of particular interest to make high impact polystyrene.
    Type: Grant
    Filed: January 21, 2008
    Date of Patent: March 19, 2013
    Assignees: Total Petrochemicals France, Centre National de la Recherche Scientifique
    Inventors: Michel Duc, Bruno Vuillemin, Denis Bertin, Sylvain Marque, Christophe Galindo
  • Patent number: 8013062
    Abstract: The invention relates to the production and use of block copolymers which are obtained by means of controlled radical polymerization in the presence of nitroxides for the purpose of reinforcing fragile polymer matrices. The invention offers advantages such as (i) simplicity of copolymer synthesis and use and (ii) fine dispersion of the copolymer molecules in the fragile matrix, which ensures both the transparency of the material and high reinforcement against impact. More specifically, the invention relates to the radical synthesis of block copolymers comprising at least three blocks, which include one block having a glass transition temperature of less than 0° C. and a thermoplastic end block having a glass transition temperature of more than 0° C., thereby guaranteeing compatibility with the fragile matrix to be reinforced against impact.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: September 6, 2011
    Assignee: Arkema France
    Inventors: Anne-Valerie Ruzette, Florence Chauvin, Olivier Guerret, Denis Bertin, Bruno Vuillemin, Ludwik Leibler, Pierre Gerard, Yannick Ederle