Patents by Inventor Bunsen Nie

Bunsen Nie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240124978
    Abstract: A gas diffuser plate in a cyclic deposition chamber is disclosed. The gas diffuser plate as fabricated comprises a substrate diffuser plate having a substrate emissivity and a coating formed on the substrate diffuser plate. The gas diffuser plate having the substrate diffuser plate coated with the coating has an emissivity higher than the substrate emissivity. The coating comprises a first layer formed on the substrate diffuser plate and comprising a first material configured to modulate the emissivity of the gas diffuser plate, and a second layer comprising a second corrosion-resistant material. The first material comprises titanium nitride oxide (TiNxOy). The emissivity of the gas diffuser plate is at least partially based on the ratio of nitrogen and oxygen in TiNxOy.
    Type: Application
    Filed: October 6, 2023
    Publication date: April 18, 2024
    Inventors: Behzad Mahmoudi, Mats Ingvar Larsson, Selase Torkornoo, Hae Young Kim, Cole Delany Green, Bunsen Nie, James Long Wu, Chan Yong Park, Deoghwan Kim, Siwon Ryu, Jae Jun Jung, Changhun Shin
  • Patent number: 7790633
    Abstract: A silicon dioxide-based dielectric layer is formed on a substrate surface by a sequential deposition/anneal technique. The deposited layer thickness is insufficient to prevent substantially complete penetration of annealing process agents into the layer and migration of water out of the layer. The dielectric layer is then annealed, ideally at a moderate temperature, to remove water and thereby fully densify the film. The deposition and anneal processes are then repeated until a desired dielectric film thickness is achieved.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: September 7, 2010
    Assignee: Novellus Systems, Inc.
    Inventors: Raihan M. Tarafdar, George D. Papasouliotis, Ron Rulkens, Dennis M. Hausmann, Jeff Tobin, Adrianne K. Tipton, Bunsen Nie
  • Publication number: 20100173074
    Abstract: A method of depositing material on a substrate comprises providing a reactor with a reaction chamber having a first volume, and contacting a surface of a substrate in the reaction chamber with a first precursor at the first chamber volume to react with and deposit a first layer on the substrate. The method further includes enlarging the reaction chamber to a second, larger volume and removing undeposited first precursor and any excess reaction product to end reaction of the first precursor with the substrate.
    Type: Application
    Filed: February 9, 2010
    Publication date: July 8, 2010
    Applicant: NOVELLUS SYSTEMS INC.
    Inventors: Francisco Juarez, Dennis Hausmann, Bunsen Nie, Teresa Pong, Adrianne Tipton, Patrick Van Cleemput
  • Patent number: 7700155
    Abstract: A method of depositing material on a substrate comprises providing a reactor with a reaction chamber having a first volume, and contacting a surface of a substrate in the reaction chamber with a first precursor at the first chamber volume to react with and deposit a first layer on the substrate. The method further includes enlarging the reaction chamber to a second, larger volume and removing undeposited first precursor and any excess reaction product to end reaction of the first precursor with the substrate.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: April 20, 2010
    Assignee: Novellus Systems, Inc.
    Inventors: Francisco Juarez, Dennis Hausmann, Bunsen Nie, Teresa Pong, Adrianne Tipton, Patrick Van Cleemput
  • Patent number: 7678709
    Abstract: A deposition method modulates the reaction rate and thickness of highly conformal dielectric films deposited by forming a saturated catalytic layer on the surface and then exposing the surface to silicon-containing precursor gas and a reaction modulator, which may accelerate or quench the reaction. The modulator may be added before, after, or during exposure of the silicon-containing precursor gas. The film thickness after one cycle of deposition may be increased up to 20 times or decreased up to 20 times.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: March 16, 2010
    Assignee: Novellus Systems, Inc.
    Inventors: Brian Lu, Wai-Fan Yau, Collin Mui, Bunsen Nie, Raihan Tarafdar
  • Patent number: 7482247
    Abstract: Conformal nanolaminate dielectric deposition and etch back processes that can fill high aspect ratio (typically at least 5:1, for example 6:1), narrow width (typically sub 0.13 micron, for example 0.1 micron or less) gaps with significantly reduced incidence of voids or weak spots involve the use of any suitable confirmal dielectric deposition technique and a dry etch back. The etch back part of the process involves a single step or an integrated multi-step (for example, two-step) procedure including an anisotropic dry etch followed by an isotropic dry etch. The all dry deposition and etch back process in a single tool increases throughput and reduces handling of wafers resulting in more efficient and higher quality nanolaminate dielectric gap fill operations.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: January 27, 2009
    Assignee: Novellus Systems, Inc.
    Inventors: George D. Papasouliotis, Raihan M. Tarafdar, Ron Rulkins, Dennis M. Hausmann, Jeff Tobin, Adrianne K. Tipton, Bunsen Nie, Wai-Fan Yau, Brian G. Lu, Timothy M. Archer, Sasson Roger Somekh
  • Patent number: 7297608
    Abstract: A method employing atomic layer deposition rapid vapor deposition (RVD) conformally deposits a dielectric material on small features of a substrate surface. The resulting dielectric film is then annealed using a high density plasma (HDP) at a temperature under 500° C. in an oxidizing environment. The method includes the following three principal operations: exposing a substrate surface to an aluminum-containing precursor gas to form a substantially saturated layer of aluminum-containing precursor on the substrate surface; exposing the substrate surface to a silicon-containing precursor gas to form the dielectric film; and annealing the dielectric film in a low temperature oxygen-containing high density plasma. The resulting film has improved mechanical properties, including minimized seams, improved WERR, and low intrinsic stress, comparable to a high temperature annealing process (˜800° C.), but without exceeding the thermal budget limitations of advanced devices.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: November 20, 2007
    Assignee: Novellus Systems, Inc.
    Inventors: George D. Papasouliotis, Raihan M. Tarafdar, Ron Rulkens, Dennis M. Hausmann, Jeff Tobin, Adrianne K. Tipton, Bunsen Nie
  • Patent number: 7294583
    Abstract: A method for depositing conformal dielectric films uses alkoxy silanol or silanediol precursors and oxidizing and/or hydrolyzing agents. The method produces a material with liquid-like flow properties capable of achieving improved high aspect ratio gap fill more efficiently than previous methods using alkoxysilanes since fewer oxidation reactions are required. In addition, the dielectric can be formed with or without a metal-containing catalyst/nucleation layer, so that metal content in the dielectric film can be avoided, if desired. Seams and voids are therefore avoided in gaps filled more efficiently with higher quality dielectric. In addition, the films as dense as deposited, reducing or eliminating the need for post-deposition processing (e.g., annealing).
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: November 13, 2007
    Assignee: Novellus Systems, Inc.
    Inventors: Ron Rulkens, George D. Papasouliotis, Dennis M. Hausmann, Raihan M. Tarafdar, Bunsen Nie, Adrianne K. Tipton, Jeff Tobin
  • Patent number: 7223707
    Abstract: A method for using ALD and RVD techniques in semiconductor manufacturing to produce a smooth nanolaminate dielectric film, in particular for filling structures with doped or undoped silica glass, uses dynamic process conditions. A dynamic process using variable substrate (e.g., wafer) temperature, reactor pressure and/or reactant partial pressure, as opposed to static process conditions through various cycles, can be used to minimize film roughness and improve gap fill performance and film properties via the elimination or reduction of seam occurrence. Overall film roughness can be reduced by operating the initial growth cycle under conditions which optimize film smoothness, and then switching to conditions that will enhance conformality, gap fill and film properties for the subsequent process cycles. Film deposition characteristics can be changed by modulating one or more of a number of process parameters including wafer temperature, reactor pressure, reactant partial pressure and combinations of these.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: May 29, 2007
    Assignee: Novellus Systems, Inc.
    Inventors: George D. Papasouliotis, Jeff Tobin, Ron Rulkens, Dennis M. Hausmann, Adrianne K. Tipton, Raihan M. Tarafdar, Bunsen Nie
  • Patent number: 7202185
    Abstract: An method employing atomic layer deposition (ALD) and rapid vapor deposition (RVD) techniques conformally deposits a dielectric material on small features of a substrate surface. The resulting dielectric film has a low dielectric constant and a high degree of surface smoothness. The method includes the following three principal operations: exposing a substrate surface to an aluminum-containing precursor gas to form a saturated layer of aluminum-containing precursor on the substrate surface; exposing the substrate surface to an oxygen-containing gas to oxidize the layer of aluminum-containing precursor; and exposing the substrate surface to a silicon-containing precursor gas to form the dielectric film. Generally an inert gas purge is employed between the introduction of reactant gases to remove byproducts and unused reactants. These operations can be repeated to deposit multiple layers of dielectric material until a desired dielectric thickness is achieved.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: April 10, 2007
    Assignee: Novellus Systems, Inc.
    Inventors: Dennis M. Hausmann, Jeff Tobin, George D. Papasouliotis, Ron Rulkens, Raihan M. Tarafdar, Adrianne K. Tipton, Bunsen Nie
  • Patent number: 7148155
    Abstract: A silicon dioxide-based dielectric layer is formed on a substrate surface by a sequential deposition/anneal technique. The deposited layer thickness is insufficient to prevent substantially complete penetration of annealing process agents into the layer and migration of water out of the layer. The dielectric layer is then annealed, ideally at a moderate temperature, to remove water and thereby fully densify the film. The deposition and anneal processes are then repeated until a desired dielectric film thickness is achieved.
    Type: Grant
    Filed: October 26, 2004
    Date of Patent: December 12, 2006
    Assignee: Novellus Systems, Inc.
    Inventors: Raihan M. Tarafdar, George D. Papasouliotis, Ron Rulkens, Dennis M. Hausmann, Jeff Tobin, Adrianne K. Tipton, Bunsen Nie
  • Patent number: 7129189
    Abstract: An method employing atomic layer deposition (ALD) and rapid vapor deposition (RVD) techniques conformally deposits a dielectric material on small features of a substrate surface. The resulting dielectric film applies a phosphate-doped silicate film using atomic layer deposition (ALD) and rapid surface catalyzed vapor deposition (RVD). The method includes the following four principal operations: exposing a substrate surface to an aluminum-containing precursor gas to form a substantially saturated layer of aluminum-containing precursor on the substrate surface; exposing the substrate surface to a phosphate-containing precursor gas to form aluminum phosphate on the substrate surface; exposing the substrate surface to an aluminum-containing precursor gas to form a second substantially saturated layer of aluminum-containing precursor on the substrate surface; and exposing the substrate surface to a silicon-containing precursor gas to form the dielectric film.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: October 31, 2006
    Assignee: Novellus Systems, Inc.
    Inventors: Dennis M. Hausmann, Adrianne K. Tipton, Bunsen Nie, George D. Papasouliotis, Ron Rulkens, Raihan M. Tarafdar
  • Patent number: 7097878
    Abstract: A method employing rapid vapor deposition (RVD) deposits a dielectric material on small features of a substrate surface. The resulting dielectric film is thicker, faster growing, shows better gap fill performance and has improved film properties compared to films resulting from silicon precursors with identical alkoxy substituents on silicon. The method includes the following two principal operations: exposing a substrate surface to a metal-containing precursor gas to form a substantially saturated layer of metal-containing precursor on the substrate surface; and exposing the substrate surface to a mixed alkoxy-substituted silicon-containing precursor gas to form the dielectric film.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: August 29, 2006
    Assignee: Novellus Systems, Inc.
    Inventors: Ron Rulkens, Dennis M. Hausmann, Raihan M. Tarafdar, George D. Papasouliotis, Bunsen Nie, Adrianne K. Tipton, Jeff Tobin
  • Patent number: 6867152
    Abstract: A rapid vapor deposition (RVD) method conformally deposits a dielectric material on small features of a substrate surface. The resulting dielectric film has a low dielectric constant, low wet etch rate, low film shrinkage and low stress hysteresis, appropriate for various integrated circuit dielectric gap fill applications such as shallow trench isolation. The method includes the following two principal operations: depositing a thin conformal and saturated layer of aluminum-containing precursor over some or all of the substrate surface; and exposing the saturated layer of aluminum-containing precursor to a silicon-containing precursor gas to form a dielectric layer. In some cases, the substrate temperatures during contact with silicon-containing precursor are greater than about 250 degree Celsius to produce an improved film. In other cases, post-deposition anneal process may be used to improve properties of the film.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: March 15, 2005
    Assignee: Novellus Systems, Inc.
    Inventors: Dennis M. Hausmann, Adrianne K. Tipton, Patrick A. Van Cleemput, Bunsen Nie, Francisco J. Juarez, Teresa Pong
  • Patent number: 6576345
    Abstract: Thin films possessing low dielectric constants (e.g., dielectric constants below 3.0) are formed on integrated circuits or other substrates. Caged-siloxane precursors are linked in such a way as to form dielectric layers, which exhibit low dielectric constants by virtue of their silicon dioxide-like molecular structure and porous nature. Supercritical fluids may be used as the reaction medium and developer both to the dissolve and deliver the caged-siloxane precursors and to remove reagents and byproducts from the reaction chamber and resultant porous film created.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: June 10, 2003
    Inventors: Patrick A. Van Cleemput, Ravi Kumar Laxman, Jen Shu, Michelle T. Schulberg, Bunsen Nie
  • Patent number: 6340628
    Abstract: A chemical vapor deposition (CVD) process uses a precursor gas, such as with a siloxane or alkylsilane, and a carbon-dioxide-containing gas, such as CO2 with O2 or CO2 with CxH(2x+1)OH where 1≦x≦5, to deposit a dielectric layer with no photoresist “footing”, a low dielectric constant, and high degrees of adhesion and hardness. Because nitrogen is not used in the deposition process (the carbon-dioxide-containing gas replaces nitrogen-containing gases in conventional processes), amines do not build into the deposited layer, thereby preventing photoresist “footing”.
    Type: Grant
    Filed: December 12, 2000
    Date of Patent: January 22, 2002
    Assignee: Novellus Systems, Inc.
    Inventors: Patrick A. Van Cleemput, Ravi Kumar Laxman, Jen Shu, Michelle T. Schulberg, Bunsen Nie